Observing and characterizing the spin distributions on a nanometer scale are of vital importance for understanding nanomagnetism and its application to spintronics. The magnetic structure in MnSi thin samples prepared from a bulk, which undergoes a transition from a helix to a skyrmion lattice, was investigated by in situ observation using Lorentz microscopy. Stripe domains were observed at zero applied field below 22.5 K. A skyrmion lattice with 6-fold symmetry in real space appeared when a field of 0.18 T was applied normal to the film plane. The lattice constant was estimated to be 18 nm, almost identical to the helical period. In comparison with the marginally stable skyrmion phase in a bulk sample, the skyrmion phase was stable over a wide range of temperatures and magnetic fields in the thin samples.
With advances in spatial resolution reaching the atomic scale, two-dimensional (2D) and 3D imaging in electron microscopy has become an essential methodology in various fields of study. Here, we report 4D imaging, with in situ spatiotemporal resolutions, in ultrafast electron microscopy (UEM). The ability to capture selected-area-image dynamics with pixel resolution and to control the time separation between pulses for temporal cooling of the specimen made possible studies of fleeting structures and morphologies. We demonstrate the potential for applications with two examples, gold and graphite. For gold, after thermally induced stress, we determined the atomic structural expansion, the nonthermal lattice temperature, and the ultrafast transients of warping/bulging. In contrast, in graphite, striking coherent transients of the structure were observed in both image and diffraction, directly measuring, on the nanoscale, the longitudinal resonance period governed by Young's elastic modulus. The success of these studies demonstrates the promise of UEM in real-space imaging of dynamics.
AR is significantly associated with favorable features in breast cancers and related to better outcomes in ER-positive not in ER-negative tumors. These results suggest that AR could be an additional marker for endocrine responsiveness in ER-positive cancers and a candidate for therapeutic targeting of ER-negative tumors.
Emergent phenomena and functions arising from topological electron-spin textures in real space or momentum space are attracting growing interest for new concept of states of matter as well as for possible applications to spintronics 1-5 . One such example is a magnetic skyrmion 3-5 , a topologically stable nanoscale spin vortex structure characterized by a topological index. Real-space regular arrays of skyrmions are described by combination of multi-directional spin helixes. Nanoscale configurations and characteristics of the two-dimensional skyrmion hexagonal-lattice have been revealed extensively by real-space observations 6-8 . Other three-dimensional forms of skyrmion lattices, such as a cubic-lattice of skyrmions, are also anticipated to exist 9,10 , yet their direct observations remain elusive. Here we report real-space observations of spin configurations of the skyrmion cubic-lattice in MnGe with a very short period (~3 nm) and hence endowed with the largest skyrmion number density. The skyrmion lattices parallel to the {100} atomic lattices are directly observed using Lorentz transmission electron microscopes (Lorentz TEMs). It enables the first simultaneous observation of magnetic skyrmions and underlying atomic-lattice fringes. These results indicate the emergence of skyrmion-antiskyrmion lattice in MnGe, which is a source of emergent electromagnetic responses 9,11 and will open a possibility of controlling few-nanometer scale skyrmion lattices through atomic lattice modulations.The discovery of giant magnetoresistance 12,13 in magnetic multilayers opened a new field, i.e., spintronics, of controlling motions of electrons using structures of spin ensemble 14 . In solids, spins interact with electron orbits at specific atomic sites. This spin-orbit (or spin-orbital) interaction is the origin of emergent states and phenomena,
Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.