Osteogenesis imperfecta (OI) is a heterogenous group of genetic disorders of bone fragility. OI type V is an autosomal-dominant disease characterized by calcification of the forearm interosseous membrane, radial head dislocation, a subphyseal metaphyseal radiodense line, and hyperplastic callus formation; the causative mutation involved in this disease has not been discovered yet. Using linkage analysis in a four-generation family and whole-exome sequencing, we identified a heterozygous mutation of c.-14C>T in the 5'-untranslated region of a gene encoding interferon-induced transmembrane protein 5 (IFITM5). It completely cosegregated with the disease in three families and occurred de novo in five simplex individuals. Transfection of wild-type and mutant IFITM5 constructs revealed that the mutation added five amino acids (Met-Ala-Leu-Glu-Pro) to the N terminus of IFITM5. Given that IFITM5 expression and protein localization is restricted to the skeletal tissue and IFITM5 involvement in bone formation, we conclude that this recurrent mutation would have a specific effect on IFITM5 function and thus cause OI type V.
The signal pathway of the C-type natriuretic (CNP) and its receptor, natriuretic peptide receptor 2 (NPR2) is involved in the longitudinal growth of long bones. Loss of function mutations at NPR2 cause acromesomelic dysplasia, type Maroteaux, while overproduction of CNP by chromosomal translocation and a gain-of-function mutation at NPR2 have been reported to be responsible for an overgrowth syndrome in three cases and one family, respectively. We identified a four-generation family with an overgrowth syndrome characterized by tall stature, macrodactyly of the great toes, scoliosis, coxa valga and slipped capital femoral epiphysis, similar to those previously reported in association with CNP/NPR2 overactivity. The serum level of amino-terminal proCNP was normal in the proband. A novel missense mutation of NPR2, c.1462G>C (p.Ala488Pro) was found to co-segregate with the phenotype in this family. In vitro transfection assay of the mutant NPR2 revealed overactivity of the mutant receptor at baseline as well as with the ligand. This overgrowth syndrome caused by a gain-of-function mutation at NPR2 should be differentiated from Marfan or related syndromes, and may be categorized along with the overgrowth syndrome caused by overproduction of CNP due to its phenotypical similarity as overgrowth CNP/NPR2 signalopathy.
Background Desbuquois dysplasia (DD) is a recessively inherited condition characterised by short stature, generalised skeletal dysplasia and advanced bone maturation. DD is both clinically and radiographically heterogeneous, and two subtypes have been distinguished based on the presence (type 1) or absence (type 2) of an accessory metacarpal bone. In addition, an apparently distinct variant without additional metacarpal bone but with short metacarpals and long phalanges (Kim variant) has been described recently. Mutations in the gene that encodes for CANT1 (calcium-activated nucleotidase 1) have been identified in a subset of patients with DD type 1. Methods A series of 11 subjects with DD from eight families (one type 1, two type 2, five Kim variant) were examined for CANT1 mutations by direct sequencing of all coding exons and their flanking introns. Results Eight distinct mutations were identified in seven families (one type 1, one type 2 and all 5 Kim variant): three were nonsense and five were missense. All missense mutations occurred at highly conserved amino acids in the nucleotidase conserved regions of CANT1. Measurement of nucleotidase activity in vitro showed that the missense mutations were all associated with loss-of-function. Conclusion The clinical-radiographic spectrum produced by CANT1 mutations must be extended to include DD type 2 and Kim variant. While presence or absence of an additional metacarpal ossification centre has been used to distinguish subtypes of DD, this sign is not a distinctive criterion to predict the molecular basis in DD.
Gastrointestinal tract duplications are uncommon congenital abnormalities arising anywhere along the alimentary tract. The most common modalities used to image duplications are US and contrast medium examinations. CT and MRI are less often used, but can be helpful in difficult cases that require a multiplanar approach. In this article, we discuss and illustrate a wide spectrum of gastrointestinal tract duplications from the oesophagus to the rectum, and illustrate the associated abnormalities of gastrointestinal tract duplications.
Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is a calcium-permeable nonselective cation channel of unknown biological function. TRPV4 mutation was first identified in brachyolmia, and then in a spectrum of autosomaldominant skeletal dysplasias, which includes Kozlowski type of spondylometaphyseal dysplasia, metatropic dysplasia, Maroteaux type of spondyloepiphyseal dysplasia and parastremmatic dysplasia. Recently, TRPV4 mutation has also been identified in a spectrum of neuromuscular diseases that includes congenital distal spinal muscular atrophy (SMA), scapuloperoneal SMA, and hereditary motor and sensory neuropathy type IIC. These diverse spectrums of diseases compose a novel channelopathy, TRPV4-pathy, which could further include polygenic traits such as serum sodium concentration and a chronic obstructive pulmonary disease. In this review, we clarified the TRPV4 mutation spectrum, and discussed the phenotypic complexity of TRPV4-pathy and its pathogenic mechanisms. TRPV4-pathy may extend further to other monogenic and polygenic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.