Application of solid catalysts synthesized from agricultural wastes provides an environmentally benign and low-cost process path to synthesize biodiesel. An ash containing an equal mixture of cocoa pod husk, plantain peel and kola nut pod husk ashes (CPK) was obtained by open combustion of each of the biomass in air and calcined at 500 °C for 4 h. The calcined CPK ash was characterized to determine its catalytic potential. Two-level transesterification technique was used to synthesize biodiesel using the developed catalyst. The process parameters involved were optimized for the microwave-aided transesterification of a blend of honne, rubber seed and neem oils in a volumetric ratio of 20:20:60, respectively. The study showed that the ash derived from combination of the biomass wastes provided a catalyst which consists all necessary catalytic ingredients in their relative abundance. The calcined CPK consists of 47.67% of potassium, 5.56% calcium and 4.21% magnesium attesting to its heterogenous status. The physisorption isotherms reveals that it was dominantly mesoporous in structure and made up of nanoparticles. A maximum of 98.45 wt.% biodiesel was obtained from a MeOH:oil blend of 12:1, CPK concentration of 1.158 wt.% and reaction time of 6 min under microwave irradiation. The quality of the synthesized biodiesel satisfied the requirements stipulated by standard specifications. Thus, this work demonstrates that a blend of agrowastes and mixtures of non-edible oils could be used to synthesize good quality and sustainable biodiesel that can replace fossil diesel.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.