Blooms of the benthic dinoflagellate Ostreopsis cf. ovata are a concern in the Mediterranean Sea, since this species produces a wide range of palytoxin-like compounds listed among the most potent marine toxins. This study focused on two analogs of palytoxin found in cultures of six strains of O. cf. ovata isolated from the south of Catalonia (NW Mediterranean Sea). In addition to some already known ovatoxins, our strains produced two minor compounds, ovatoxin-g and the so far called putative palytoxin, whose structures had not been elucidated before. Insufficient quantity of these compounds impeded a full nuclear magnetic resonance (NMR)-based structural elucidation; thus, we studied their structure in crude algal extracts through liquid chromatography-electrospray ionization high-resolution mass spectrometry(n) (LC-ESI-HRMS(n)) in positive ion mode. Under the used MS conditions, the molecules underwent fragmentation at many sites of their backbone and a large number of diagnostic fragment ions were identified. As a result, tentative structures were assigned to both ovatoxin-g and the putative palytoxin, the latter being identified as a palytoxin isomer and re-named as isobaric palytoxin.
The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.