The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities.
Severe food poisoning events after the consumption of sharks have been reported since the 1940s; however, there has been no clear understanding of their cause. Herein, we report for the first time the presence of ciguatoxins (CTXs) in sharks. The identification by mass spectrometry of CTXs, including two new analogues, in a bull shark (Carcharhinus leucas) that was consumed by humans, causing the poisoning and death of 11 people in Madagascar in 2013 is described. Typical neurotoxic ciguatera symptoms were recorded in patients, and toxicological assays on extracts of the shark demonstrated CTX-like activity. These results confirm this episode as a ciguatera poisoning event and expand the range of pelagic fish species that are involved in ciguatera in the Indian Ocean. Additionally, gambieric acid D, a molecule originally described in CTX-producing microalgae, was identified for the first time in fish. This finding can contribute to a better understanding of trophic relations within food webs. The present work confirms that consumption of sharks from the Indian Ocean should be considered a ciguatera risk, and actions should be taken to evaluate its magnitude and risk in order to manage shark fisheries.
Although consumption of Tetraodontidae species is prohibited in the EU, intoxications are still reported. The evaluation of tetrodotoxins (TTXs) by mass spectrometry (LC-MS/MS and LC-HRMS) and a screening immunoassay (mELISA) in tetraodontid fishes caught along the Western Mediterranean Sea revealed high concentrations of TTXs in Lagocephalus sceleratus while no TTXs were identified in L. lagocephalus and Sphoeroides pachygaster individuals. The high TTXs content found in the L. sceleratus analysed herein demonstrate the occurrence of highly toxic puffer fish in the Western Mediterranean Sea. Being L. sceleratus a recent invasive species in the Mediterranean, surveillance, risk assessment and risk management measures are necessary. The strategy used within this research work could be a valuable tool for future food safety monitoring.
The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.