The aim of research was to elaborate the non-biodegradable (made of polypropylene (PP)) and resorbable (made of polylactide (PLA)) tubular fibrous structures for the reconstruction of the vascular vessels. For the mentioned structures design, nonconventional manufacturing techniques such as melt blown, melt electrospinning, and melt electroblowing were used. Three techniques were chosen as methods allowing on the fibrous structures manufacture containing fibers in nano-or submicro-size diameter. Other advantages of free-solvent technique use is the reduction in the clinical adverse events associated with solvent resided in the fibrous structure during the fabrication. The tubular fibrous structures of PP and PLA using above-mentioned techniques were designed. In first stage, the analysis of the processing parameters influence on the nonbiodegradable and biodegradable tubular structures fiber diameter was performed. Subsequently, the validation step was the analysis of the influence of processing parameters on PP and PLA structural properties for each manufacturing techniques was investigated. The research results confirmed the ability of the tubular structures manufacture with various fiber diameter depending on the applied technique and processing parameters.
Polylactide (PLA) non-woven surfaces were modified with Radio Frequency plasma (RF) under reduced pressure with the use of two media, air and C6F14 vapor. The effectiveness of the plasma modification of nonwovens was analyzed by examining the fiber surface layer with ATR-FTIR absorption spectroscopy, SEM/EDX microanalysis of atomic composition, SEM surface morphology, wettability tests, susceptibility to water, and physiological liquid absorption tests and air permeability tests. The type of plasma used determines the effect obtained. Air plasma improves sorption properties of nonwovens and does not significantly affect air permeability. C6F14 vapor plasma significantly reduces the absorption of liquids by the fabric and increases its hydrophobicity. The effects obtained from the plasma are stable for six months of fabrics storage after treatment. PLA fabrics modified with plasma can be used for various applications such as dressing and sanitary materials.
The study presents the manufacturing of nanofibrous structures as osteoconductive, osteoinductive materials for osseous tissue regeneration. The fibrous structures were obtained by electrospinning of poly(l-lactide-coglicolide) (PLGA) with addition of hydroxyapatite (HAp) and of a blend of PLGA with polyhydroxybutyrate with HAp added. The polymers used in the experiment were synthesised by an innovative method with a zirconium catalyst. First, the optimal electrospinning process parameters were selected. For the characterisation of the obtained osseous tissue reconstruction materials, the physical, macroscopic, functional, mechanical and thermal properties as well as crystallinity index were studied. The study of the radiation sterilisation influence on average molar mass, thermal and mechanical properties was made in order to analyse the degradation effect.
The aim of study is the elaboration of semi-biodegradable, multilayered tubular structures as substitutes for the reconstruction of small diameter vascular prostheses (<6 mm). The inert external layer of the prostheses will be fabricated via the melt electrospinning of poly (L-lactide-co-glycolide) (PLGA). The middle layer will be constructed from polypropylene (PP); the first prototype will be produced via melt electrospinning and the second using the melt blowing technique. The general aim of this stage of the research is the selection of a sterilisation technique that is appropriate for semi-biodegradable, multilayered tubular structures. For this purpose, single tubular structures created via the melt electrospinning of PLGA or PP and melt blown tubular structures of PP were elaborated. The influence of steam, ethylene-oxide (EO), and radiation sterilisation techniques on the elaborated microstructure of tubular structures was analyzed during this study. The effect of each sterilisation technique was evaluated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy/energy-dispersive Xray spectroscopy analysis (SEM/EDS). The changes in average molecular weight (M w ) and crystallinity index (CI) of the PLGA tubular structures after EO and steam sterilisation were evaluated. The EO and steam sterilisation resulted in the complete destruction of PLGA tubular structures. Only the radiation sterilisation (accelerated electrons) did not influence on PLGA tubular structures morphology as well as thermal and chemical properties. FTIR and SEM/EDS analysis indicated that no changes in the chemical properties of PP tubular structures after each sterilisation occurred.
The aim of the work was to obtain nano fibrous structures from biodegradable polymer with the addition of hydroxyapatite using electrospinning technique. Research was conducted with two types of solvent: dichloromethane and 50:50 mixture of dimethyl sulfoxide and dichloromethane. As a polymer a copolymer of L-lactide and glycolide (PLGA), commercial product with trade name Resomer®LG 824, was used. The preliminary electrospinning tests enabled to match optimal polymer solution concentration of tested samples. Rheological properties of all tested polymer solutions has been determined. Influence of electrospinning conditions and the type of solvent on macroscopic structure has been investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.