Background: Identification of modifiable risk factors that affect cognitive decline is important for the development of preventive and treatment strategies. Status of paraoxonase 1 (PON1), a high-density lipoprotein-associated enzyme, may play a role in the development of neurological diseases, including Alzheimer’s disease. Objective: We tested a hypothesis that PON1 status predicts cognition in individuals with mild cognitive impairment (MCI). Methods: Individuals with MCI (n = 196, 76.8-years-old, 60% women) participating in a randomized, double-blind placebo-controlled trial (VITACOG) were assigned to receive a daily dose of folic acid (0.8 mg), vitamin B12 (0.5 mg) and B6 (20 mg) (n = 95) or placebo (n = 101) for 2 years. Cognition was analyzed by neuropsychological tests. Brain atrophy was quantified in a subset of participants (n = 168) by MRI. PON1 status, including PON1 Q192R genotype, was determined by quantifying enzymatic activity of PON1 using paraoxon and phenyl acetate as substrates. Results: In the placebo group, baseline phenylacetate hydrolase (PhAcase) activity of PON1 (but not paraoxonase activity or PON1 Q192R genotype) was significantly associated with global cognition (Mini-Mental State Examination, MMSE; Telephone Inventory for Cognitive Status-modified, TICS-m), verbal episodic memory (Hopkins Verbal Learning Test-revised: Total Recall, HVLT-TR; Delayed Recall, HVLT-DR), and attention/processing speed (Trail Making A and Symbol Digits Modalities Test, SDMT) at the end of study. In addition to PhAcase, baseline iron and triglycerides predicted MMSE, baseline fatty acids predicted SDMT, baseline anti-N-Hcy-protein autoantibodies predicted TICS-m, SDMT, Trail Making A, while BDNF V66M genotype predicted HVLT-TR and HVLT-DR scores at the end of study. B-vitamins abrogated associations of PON1 and other variables with cognition. Conclusion: PON1 is a new factor associated with impaired cognition that can be ameliorated by B-vitamins in individuals with MCI.
Introduction: Elevated homocysteine (Hcy) and related metabolites accelerate Alzheimer's disease. Hcy-lowering B vitamins slow brain atrophy/cognitive decline in mild cognitive impairment (MCI). Modification with Hcy-thiolactone generates autoimmunogenic N-Hcy-protein. We tested a hypothesis that anti-N-Hcy-protein autoantibodies predict cognition in individuals with MCI participating in a randomized, double-blind, placebo-controlled VITACOG trial of B vitamins. Methods: Participants with MCI (n = 196, 76.8 years old, 60% women) were randomly assigned to receive a daily dose of folic acid (0.8 mg), vitamin B 12 (0.5 mg), and B 6 (20 mg) (n = 98) or placebo (n = 98) for 2 years. Cognition was analyzed by neuropsychological tests. Brain atrophy was quantified in a subset of patients (n = 167) by magnetic resonance imaging. Anti N-Hcy-protein auto-antibodies were quantified by enzyme-linked immunosorbent assay. Associations among anti-N-Hcy-protein autoantibodies, cognition, and brain atrophy were examined by multiple regression analysis. Results: At baseline, anti-N-Hcy-protein autoantibodies were significantly associated with impaired global cognition (Mini-Mental State Examination [MMSE]), episodic memory (Hopkins Verbal Learning Test-revised), and attention/processing speed (Map Search). At the end of the study, anti-N-Hcy-protein autoantibodies were associated with impaired global cognition (MMSE) and attention/processing speed (Trail Making A). In the placebo group, baseline anti-N-Hcy-protein autoantibodies predicted, independently of Hcy, global cognition (Telephone Inventory for Cognitive Status modified [TICS-m]; MMSE) and attention/processing speed (Trail Making A) but not brain atrophy, at the end of study. B-vitamin treatment abrogated association of anti-N-Hcyprotein autoantibodies with cognition.Discussion: These findings suggest that anti-N-Hcy-protein autoantibodies can impair functional (attention/processing speed and global cognition), but not structural (brain atrophy), aspects of cognition. Anti-N-Hcy-protein autoantibodies are a new factor associated with impaired cognition, which could be ameliorated by B vitamins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.