The article examines the competitiveness of Ukrainian banks influenced by economy digitalization, the dynamic spread of electronic payments and e-commerce, as well as innovative technologies aimed at providing digital services. When shifting to an Online Platform business model, a bank can expand its range of banking products, attract more customers, thereby forming a competition policy and gaining competitive advantages. The paper aims to assess the digitalization level affecting the general competitiveness of banks and its components based on Ukrainian banks. For this purpose, the following methods were used: standardized input statistical indicators, comparison and ranking, a cluster analysis, and a regression and correlation analysis. The cluster analysis confirmed the current role of digitalization as a competition driver that determines the competitive advantages of banks and creates additional opportunities to expand the customer base and the range of services. The correlation and regression dependence of the competitive position identified by the activity indicators of certain banks on the level of competitive digitalization confirmed a close direct impact on the competitive position of personal deposits arising from the development of digital banking technology; the pre-tax income, profiles of assets and personal loans, and corporate deposits are subject to a significant direct impact, while the weakest direct impact determines corporate loans. The foregoing substantiates the feasibility of large-scale introduction of innovative digital technologies by banks to maintain competitive positions in the banking sector of the economy. Applying the proposed approach based on certain regression equations, managers of Ukrainian banks will be able to assess the efficiency and make appropriate decisions concerning investing in digital tools and services.
Data on global financial statistics demonstrate that total losses from fraudulent transactions around the world are constantly growing. The issue of payment fraud will be exacerbated by the digitalization of economic relations, in particular the introduction by banks of the concept of "Bank-as-a-Service", which will increase the burden on payment services. The aim of this study is to synthesize effective models for detecting fraud in digital payment systems using automated machine learning and Big Data analysis algorithms. Approaches to expanding the information base to detect fraudulent transactions have been proposed and systematized. The choice of performance metrics for building and comparing models has been substantiated. The use of automatic machine learning algorithms has been proposed to resolve the issue, which makes it possible in a short time to go through a large number of variants of models, their ensembles, and input data sets. As a result, our experiments allowed us to obtain the quality of classification based on the AUC metric at the level of 0.977-0.982. This exceeds the effectiveness of the classifiers developed by traditional methods, even as the time spent on the synthesis of the models is much less and measured in hours. The models' ensemble has made it possible to detect up to 85.7 % of fraudulent transactions in the sample. The accuracy of fraud detection is also high (79-85 %). The results of our study confirm the effectiveness of using automatic machine learning algorithms to synthesize fraud detection models in digital payment systems. In this case, efficiency is manifested not only by the resulting classifiers' quality but also by the reduction in the cost of their development, as well as by the high potential of interpretability. Implementing the study results could enable financial institutions to reduce the financial and temporal costs of developing and updating active systems against payment fraud, as well as improve the effectiveness of monitoring financial transactions
The COVID-19 pandemic has complicated the operating environment for banks around the world. Determining the drivers of digitalization of banking services based on the principles of corporate social responsibility of banks makes it possible to find a way out of the crisis. The objective of the study is to develop a model for clustering banks in terms of the level of digitalization on the principles of corporate social responsibility.In this study, a twofold model has been proposed: the first part includes the calculation of the level of digitalization of banking, and the second part includes mathematical simulation of the clustering of bank digitalization level. This study reveals new possible solutions to the digitalization of banking in the face of new threats. In particular, factor analysis identifies the main factors, cluster analysis ranks banks into three categories (A, B, C) of service digitalization, and a dendrogram identifies digitalization drivers. The model was tested on 22 banks. Eight per cent of the banks are rated A “Very good” and B “Good”. 92% have Level C “Satisfactory”. The results of the study prove that the model should be validated. It should be confirmed that the application of the developed methodology for increasing the digitalization of banking services will increase customer loyalty by 15%, improve sustainability by reducing risk by 10%, and make banks attractive for investment by 15-20%.
Мета статті полягає в удосконаленні існуючих теоретичних і прикладних аспектів та обґрунтуванні стратегічного підходу в антикризовому управлінні банківськими установами. З урахуванням огляду існуючого наукового доробку авторами відзначено, що антикризове стратегічне управління банком повинно базуватися на відповідній концептуальній основі. Визначено, що пріоритетною метою функціонування банку та завданням щодо попередження та нейтралізації кризи э підхід, заснований на взаємозв'язку ресурсів, можливостей, конкурентних переваг і стратегії, з базуванням на моніторингу середовища ведення банківського бізнесу, його динамічності та непередбачуваності. Зазначено, що систематизація стратегій має базуватися на ключових характеристиках, розмежуванні їх видів, умов та сфери застосування. На думку авторів, антикризова стратегія управління діяльністю банків повинна формуватися та реалізовуватися на трьох ієрархічних рівнях управління: банку в цілому; підрозділів; функціонально-операційному з упровадженням відповідних корпоративних, ділових і функціональних антикризових стратегій. У результаті дослідження запропоновано систематизацію антикризових стратегій банків у розрізі низки критеріїв, таких як: ієрархічний рівень управління; джерела фінансування; функціональна спрямованість; методи ідентифікації та способи реагування на кризові явища та загрози; характер прийняття та реалізації антикризових управлінських рішень; життєвий цикл розвитку банку та глибина кризи; джерела та характер виникнення кризових явищ. Відзначено, що забезпечення антикризової стратегії фінансовими ресурсами передбачає їх мобілізацію за рахунок внутрішніх і зовнішніх джерел, у результаті чого, залежно від глибини кризи та характеру антикризових заходів, виокремлюють стратегію антикризового управління, яка базується на внутрішніх фінансових ресурсах, і стратегію зовнішніх джерел фінансування. Перспективою подальших досліджень у даному напрямі є необхідність розробки методичного інструментарію діагностики типу та глибини кризи на макро-і мікрорівнях з виокремленням відповідних превентивних і реактивних інструментів антикризового менеджменту в банках.
The article studies the approach to assessing the banking digitalization influenced by economy digitalization, dynamically spread electronic payments, e-commerce, and innovative digital service technologies. Digitalized banking services, widespread online platforms and digital customer communication channels require an approach to assessing the banking digitalization identifying the bank’s competitiveness, strengths and weaknesses strategically. The aim is to develop a banking digitalization indicator system and assessment methods within a complex indicator. To achieve this, the research applied generalization, grouping, systematization to form a grouped indicator system; static, dynamic, structural indicator assessment methods; normalization and integration by arithmetic mean. This approach utilizes the banking digitalization indicators systematically generalized by three groups: digital banking platform indicators; bank’s digital service indicators; indicators of digital communications with the bank’s customers. Each group provides a flexible indicator set to track the changing banking digitalization trends. Outlining the mathematical transformation of indicators into a single integrated indicator determines the use of innovative products and services and substantiates the areas of ensuring competitiveness and improving the bank’s development strategy. While assessing the banking digitalization, this approach grants the following advantages: this analytical tool monitors, analyses, and assesses the banking digitalization trends; banks will realize the strengths and weaknesses of digital tools to ensure the banking market competitiveness; competitive positioning of a bank in the banking service market; analysing, assessing, and positioning improve the bank’s development strategy, relevant technologies, and digital transformation tools. Future research should consider an approach to improving the development of the bank’s marketing strategy utilizing digital technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.