The vehicle routing problem with time windows is concerned with the optimal routing of a fleet of vehicles between a depot and a number of customers that must be visited within a specified time interval, called a time window. The purpose of this thesis is to develop new and efficient solution techniques for solving the vehicle routing problem with time windows (VRPTW). The thesis consists of a section of introductory remarks and four independent papers.The first paper 'Formulations and exact approaches for the vehicle routing problem with time windows' (Kallehauge, 2005, unpublished) is a review of the exact algorithms proposed in the last three decades for the solution of the vehicle routing problem with time windows. A detailed analysis of the formulations of the VRPTW is presented together with a review of the literature related to the different formulations. We present the two main lines of development in relation to the exact approaches for the VRPTW. One is concerned with the general decomposition approach and the solution to certain dual problems associated with the VRPTW. Another more recent direction is concerned with the analysis of the polyhedral structure of the VRPTW. We conclude by examining possible future lines of research in the area of the VRPTW.In the second paper 'Lagrangian duality applied to the vehicle routing problem with time windows' (Kallehauge, Larsen, and Madsen, Computers & Operations Research, 33:1464-1487 we consider the Lagrangian relaxation of the constraint set requiring that each customer must be served by exactly one vehicle yielding a constrained shortest path subproblem. We present a stabilized cutting-plane algorithm within the framework of linear programming for solving the associated Lagrangian dual problem. This algorithm creates easier constrained shortest path subproblems because less negative cycles are introduced and it leads to faster multiplier convergence due to a stabilization of the dual variables. We have embedded the stabilized cutting-plane algorithm in a branch-and-bound search and introduce strong valid inequalities at the master problem level by Lagrangian relaxation. The result is a Lagrangian branch-andcut-and-price (LBCP) algorithm for the VRPTW. Making use of this acceleration strategy at the master problem level gives a significant speed-up compared to algorithms in the literature based on traditional column generation. We have solved two test problems introduced in 2001 by Gehring and Homberger with 400 and 1000 customers respectively, which to date are the largest problems ever solved to optimality. We have implemented the LBCP algorithm using the ABACUS open-source framework for solving mixed-integer linear-programs by branch, cut, and price.In the third paper 'Path inequalities for the vehicle routing problem with time windows' (Kallehauge, Boland, and Madsen, 2005, submitted) we introduce a new formulation of the VRPTW involving only binary variables associated with the arcs in the underlying digraph. The new formulation is based on a f...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.