The aim of this study was to prepare bovine serum albumin-based beads containing maghemite nanoparticles incorporated via ionic magnetic fluid and to evaluate the cell toxicity of this biocompatible system using the J774-A1 cell line. Transmission electron micrographs obtained from the magnetic fluid sample were used to estimate the average particle diameter around 7.6 nm and diameter dispersion of 0.22. The BSA-based magnetic beads were prepared using the heat protein denaturation route. The nanoparticle concentration in the magnetic fluid sample used for the synthesis of the magnetic beads was in the range of 1.2 x 10(16) to 2.3 x 10(17) particle/ml. The methodology used to investigate the cell toxicity of the magnetic beads was the classical MTT assay. Our observation showed that the toxicity against the J774-A1 cell line depends upon the amount of magnetic material incorporated into the magnetic nanobeads and was found to be 14, 11, 9, 5, and 3% for 2.3 x 10(17), 1.2 x 10(17), 4.6 x 10(16), 2.3 x 10(16), and 1.2 x 10(16) particle/ml, respectively.
Parkinson's disease (PD) is a progressive and chronic neurodegenerative disease of the central nervous system. Early treatment for PD is efficient; however, long-term systemic medication commonly leads to deleterious side-effects. Strategies that enable more selective drug delivery to the brain using smaller dosages, while crossing the complex brain-blood barrier (BBB), are highly desirable to ensure treatment efficacy and decrease/avoid unwanted outcomes. Our goal was to design and test the neurotherapeutic potential of a forefront nanoparticle-based technology composed of albumin/PLGA nanosystems loaded with dopamine (ALNP-DA) in 6-OHDA PD mice model. ALNP-DA effectively crossed the BBB, replenishing dopamine at the nigrostriatal pathway, resulting in significant motor symptom improvement when compared to Lesioned and L-DOPA groups. Notably, ALNP-DA (20 mg/animal dose) additionally up-regulated and restored motor coordination, balance, and sensorimotor performance to non-lesioned (Sham) animal level. Overall, ALNPs represent an innovative, non-invasive nano-therapeutical strategy for PD, considering its efficacy to circumvent the BBB and ultimately deliver the drug of interest to the brain.
BackgroundThe increasing incidence of cancer and the search for more effective therapies with minimal collateral effects have prompted studies to find alternative new treatments. Among these, photodynamic therapy (PDT) has been proposed as a very promising new modality in cancer treatment with the lowest rates of side effects, revealing itself to be particularly successful when the photosensitizer is associated with nanoscaled carriers. This study aimed to design and develop a new formulation based on albumin nanospheres containing zinc-phthalocyanine tetrasulfonate (ZnPcS4-AN) for use in the PDT protocol and to investigate its antitumor activity in Swiss albino mice using the Ehrlich solid tumor as an experimental model for breast cancer.MethodsEhrlich tumor’s volume, histopathology and morphometry were used to assess the efficacy of intratumoral injection of ZnPcS4-AN in containing tumor aggressiveness and promoting its regression, while the toxicity of possible treatments was assessed by animal weight, morphological analysis of the liver and kidneys, hemogram, and serum levels of total bilirubin, direct bilirubin, indirect bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (GGT), alkaline phosphatase, creatinine and urea. In order to evaluate the efficacy of PDT, groups of animals treated with intratumoral injection of doxorubicin (Dox) were also investigated.ResultsIntratumoral injection of ZnPcS4-AN was found to be efficient in mediating PDT to refrain tumor aggressiveness and to induce its regression. Although tumor volume reduction was not significant, PDT induced a remarkable increase in the necrosis area seen in the tumor’s central region, as in other experimental groups, including tumor and Dox treated groups, but also in the tumor’s peripheral region. Further, PDT showed minimal adverse effects. Indeed, the use of ZnPcS4-AN in mediating PDT revealed anti-neoplastic activity similar to that obtained while using intratumoral Dox therapy.ConclusionsPDT mediated by the new formulation ZnPcS4-AN enhanced the inhibition of tumor growth while producing practically no adverse effects and thus emerges as a very promising nanotechnology-based strategy for solid cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.