3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our novel calibration method is shown.With our setup we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.
It is assumed that heat-assisted magnetic recording (HAMR) is the recording technique of the future. For pure hard magnetic grains in high density media with an average diameter of 5 nm and a height of 10 nm the switching probability is not sufficiently high for the use in bit-patterned media. Using a bilayer structure with 50% hard magnetic material with low Curie temperature and 50% soft magnetic material with high Curie temperature to obtain more than 99.2% switching probability, leads to very large jitter. We propose an optimized material composition to reach a switching probability of P switch > 99.2% and simultaneously achieve the narrow transition jitter of pure hard magnetic material. Simulations with a continuous laser spot were performed with the atomistic simulation program VAMPIRE for a single cylindrical recording grain with a diameter of 5 nm and a height of 10 nm. Different configurations of soft magnetic material and different amounts of hard and soft magnetic material were tested and discussed. Within our analysis, a composition with 20% soft magnetic and 80% hard magnetic material reaches the best results with a switching probability P switch > 99.2%, an off-track jitter parameter σ off,80/20 = 14.2 K and a down-track jitter parameter σ down,80/20 = 0.49 nm.
We investigate how a temperature reduction in z−direction influences the switching probability and the noise in heat-assisted magnetic recording (HAMR) for a bit in bit-patterned media with dimensions d = 5 nm and h = 10 nm. Pure hard magnetic bits are considered and simulations with a continuous laser pulse are performed using the atomistic simulation tool VAMPIRE. The results display that the switching behavior shows a thermally induced exchange spring effect. Simultaneously, both the AC and the DC noise increase. Additionally, we illustrate how an artificial Curie temperature gradient within the material can compensate the HAMR performance loss due to the temperature gradient. Further, due to the graded Curie temperature, DC noise can be reduced compared to a structure where no temperature gradient is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.