This paper aims to assess the gas turbine operability and overall hybrid electric propulsion system performance for a parallel configuration applied to a 150 passenger single-aisle aircraft. Two arrangements are considered: one where the low pressure shaft is boosted and one where the high pressure shaft is boosted. For identifying limits in the hybridization strategy steady state and transient operation are considered and the hybridization effect on compressor operability is determined. Having established the electric power on-take limits with respect to gas turbine operation the systems performance at aircraft level is quantified for the relevant cases. Different power management strategies are applied for the two arrangements and for different power degrees of hybridization. The results indicate that despite the fact that pollutant emission and fuel consumption may improved for hybrid propulsion, this comes at the cost of reduced payload and operability margins. Boosting the low pressure shaft may give the highest engine performance benefits but with a significant weight penalty, while the low pressure compressor system operability is negatively affected. On the other hand boosting the high pressure shaft provides lower engine performance benefits but with smaller weight penalty and with less operability concerns.
This paper assesses a parallel electric hybrid propulsion system utilizing simple and recuperated cycle gas turbine configurations. An adapted engine model capable to reproduce a turboshaft engine steady state and transient operation is built in Simcenter Amesim and used as a baseline for a recuperated engine. The transient operation of the recuperated engine is assessed for different values of heat exchanger effectiveness, quantifying the engine lag and the surge margin reduction which are results of the heat exchanger addition. An oil and gas (OAG) mission of a twin engine medium helicopter has been used for assessing the parallel hybrid configuration. The thermoelectric system brings a certain level of flexibility allowing for better engine utilization, thus first a hybrid configuration based on simple cycle gas turbine scaled down from the baseline engine is assessed in terms of performance and weight. Following the recuperated engine, thermoelectric power plant is assessed and the performance enhancement is compared against the simple cycle conventional and hybrid configurations. The results indicate that a recuperated gas turbine based thermo-electric power plant may provide significant fuel economy despite the increased weight. At the same time, the electric power train can be used to compensate for the reduced specific power and potentially for the throttle response change due to the heat exchanger addition.
Future aircraft and rotorcraft propulsion systems should be able to meet ambitious targets and severe limitations set by governments and organizations. These targets cannot be achieved through marginal improvements in turbine technology or vehicle design. Hybrid-electric propulsion is being widely considered as a revolutionary concept to further improve the environmental impact of air travel. One of the most important challenges and barriers in the development phase of hybrid-electric propulsion systems is the Thermal Management System (TMS) design, sizing and optimization for addressing the increased thermal loads due to the electric power train. The aim of this paper is to establish an integrated simulation framework including the vehicle, the propulsion system and the fuel-oil system (FOS) for assessing the cooling capability of the FOS for the more electric era of rotorcrafts. The framework consists of a helicopter model, propulsion system models, both conventional and hybrid-electric, and a FOS model. The test case is a twin-engine medium (TEM) helicopter flying a representative Passenger Air Transport (PAT) mission. The conventional power plant heat loads are calculated and the cooling capacity of the FOS is quantified for different operating conditions. Having established the baseline, three different Power Management Strategies (PMS) are considered and the integrated simulation framework is utilized for evaluating FOS temperatures. The results highlight the limitations of existing rotorcraft FOS to cope with the high values of thermal loads associated with hybridization for the cases examined. Hence, new ideas and embodiments should be identified and assessed. The case of exploiting the fuel tank as a heat sink is investigated and the results indicate that recirculating fuel to the fuel tank can enhance the cooling capacity of conventional FOS.
The progress in aerospace technology over the recent years led to the development of more sophisticated and integrated systems. To cope with this complexity, the aerospace industry is seeing a progressive trend towards adopting Model-Based Systems Engineering (MBSE) in various stages of the product development cycle. The ability to capture emerging behavior, mitigation of risk and improved communication among different stakeholders are some key benefits that MBSE provides over traditional methods for complex systems and processes. This paper attempts to bridge the gap between system architecting and system simulation activities by proposing a methodology to facilitate seamless flow of information between the two development aspects. This methodology was applied to the development of a parallel hybrid-electric version of the ATR 42–500. The use case was designed for a regional mission of 400 nautical miles with the ability to meet regulation requirement of carrying enough reserves for landing at an alternate airport. An integrated systems model, consisting of gas turbine engine, electric powertrain, and flight dynamics, was developed with Simcenter Amesim to analyze the dynamics performance of the aircraft throughout the whole mission. The key metrics evaluated were fuel consumption, take-off weight and the Energy Specific Air Range (ESAR) of the aircraft. As environmental regulations are becoming more stringent, pollutant and noise emissions were considered in the study. The most promising hybrid configurations are recognized, the potential benefits are quantified highlighting the strong potential of System Architecting and System Simulation to provide valuable insights early in the development cycle, reducing the time and cost of product development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.