A method was developed to detect and identify Enterobacter sakazakii in environmental samples. The method is based on selective enrichment at 45+/-0.5 degrees C in lauryl sulfate tryptose broth supplemented with 0.5 M NaCl and 10 mg/liter vancomycin (mLST) for 22 to 24 h followed by streaking on tryptone soy agar with bile salts. When exposed to light during incubation at 37 degrees C, E. sakazakii produces yellow colonies within 24 h; identification was confirmed by testing for alpha-glucosidase activity and by using API 20E strips. All of the E. sakazakii strains tested (n = 99) were able to grow in mLST at 45+/-0.5 degrees C, whereas 35 of 39 strains of potential competitors, all belonging to the Enterobacteriaceae, were suppressed. A survey was carried out with 192 environmental samples from four different milk powder factories. Using this new protocol, E. sakazakii was isolated from almost 40% of the samples, whereas the reference procedure (enrichment in buffered peptone water, isolation on violet red bile glucose agar, and biochemical identification of randomly chosen colonies) only yielded 26% positive results. This selective method can be very useful for the rapid and reliable detection of E. sakazakii in environmental samples.
Thirty-eight strains of Bacillus sporothermodurans isolated from ultra-high-temperature (UHT)-treated milk or sterilized milk (UHT isolates) and from animal feed or raw milk (farm isolates) were characterized by automated ribotyping and by repetitive extragenic palindromic (REP)-PCR fingerprinting. By investigating the genetic relationships among isolates from these various sources, the relative importance of different contamination sources could be evaluated. The results of the separate clustering analyses of the PvuII and EcoRI ribopatterns and the REP-PCR patterns were largely consistent with each other and revealed the existence of two main clusters; there was one homogeneous group containing all (REP-PCR) or most (ribotyping) of the UHT isolates, and there was a second more diverse group comprising the farm isolates. A combined threedimensional analysis of all data showed that three German UHT isolates did not belong to the compact group containing the majority of the UHT isolates. These results demonstrate that B. sporothermodurans is more heterogeneous than previously assumed and that most of the UHT isolates form a genetically distinct subgroup and are capable of producing highly heat-resistant spores. The close genetic relationship of these UHT isolates suggests a clonal origin of a few predominant strains of B. sporothermodurans that can be found in UHT-treated or sterilized milk products.
Enterobacter sakazakii is a motile, peritrichous, gram-negative rod that was previously known as a yellow pigmented Enterobacter cloacae. It is documented as a rare cause of outbreaks and sporadic cases of life-threatening neonatal meningitis, necrotizing enterocolitis, and sepsis. E. sakazakii has been isolated from milk powder-based formulas, and there is thus a need to investigate whether and where E. sakazakii occurs in these manufacturing environments. For this purpose, a simple detection method was developed based on two features of E. sakazakii: its yellow pigmented colonies when grown on tryptone soy agar and its constitutive alpha-glucosidase, which is detected in a 4-h colorimetric assay. Using this screening method, E. sakazakii strains were isolated from three individual factories from 18 of 152 environmental samples, such as scrapings from dust, vacuum cleaner bags, and spilled product near equipment. The method is useful for routine screening of environmental samples for the presence of E. sakazakii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.