Nitroaromatic compounds are inherently nonfluorescent, and the subpicosecond lifetimes of the singlet excited states of many small nitrated polycyclic aromatic hydrocarbons, such as nitronaphthalenes, render them unfeasible for photosensitizers and photo-oxidants, despite their immensely beneficial reduction potentials. This article reports up to a 7000-fold increase in the singlet-excited-state lifetime of 1-nitronaphthalene upon attaching an amine or an N-amide to the ring lacking the nitro group. Varying the charge-transfer (CT) character of the excited states and the medium polarity balances the decay rates along the radiative and the two nonradiative pathways and can make these nitronaphthalene derivatives fluoresce. The strong electron-donating amine suppresses intersystem crossing (ISC) but accommodates CT pathways of nonradiate deactivation. Conversely, the N-amide does not induce a pronounced CT character but slows down ISC enough to achieve relatively long lifetimes of the singlet excited state. These paradigms are key for the pursuit of electron-deficient (n-type) organic conjugates with promising optical characteristics.
Photosensitizers that display “unusual” emission from upper electronically excited states offer possibilities for initiating higher-energy processes than what the governing Kasha’s rule postulates. Achieving conditions for dual fluorescence from multiple states of the same species requires molecular design and conditions that favorably tune the excited-state dynamics. Herein, we switch the position of the electron-donating NMe2 group around the core of benzo[g]coumarins (BgCoum) and tune the electronic coupling and the charge-transfer character of the fluorescent excited states. For solvents with intermediate polarity, three of the four regioisomers exhibit fluorescence from two different excited states with bands that are well separated in the visible and the near-infrared spectral regions. Computational analysis, employing ab initio methods, reveals that the orientation of an ester on the pyrone ring produces two conformers responsible for the observed dual fluorescence. Studies with solid solvating media, which restricts the conformational degrees of freedom, concur with the computational findings. These results demonstrate how “seemingly inconsequential” auxiliary substituents, such as the esters on the pyrone coumarin rings, can have profound effects leading to “anti-Kasha” photophysical behavior important for molecular photonics, materials engineering, and solar-energy science.
The importance of electrochemical analysis for chargetransfer science cannot be overstated. Interfaces in electrochemical cells present certain challenges in the interpretation and the utility of the analysis. This publication focuses on: (1) the medium polarity that redox species experience at the electrode surfaces that is smaller than the polarity in the bulk media and (2) the liquid-junction potentials from interfacing electrolyte solutions of different organic solvents, namely, dichloromethane, benzonitrile, and acetonitrile. Electron-donor−acceptor pairs of aromatics with similar structures (i.e., 1-naphthylamine and 1-nitronaphthalene, 10-methylphenothiazine and 9-nitroanthracene, and 1aminopyrene and 1-nitropyrene) serve as redox analytes for this study. Using the difference between the reduction potentials of the oxidized donors and the acceptors eliminates the effects of the liquid junctions on the analysis of charge-transfer thermodynamics. This analysis also offers a means for evaluating the medium polarity that the redox species experience at the surface of the working electrode and the effects of the liquid junctions on the measured reduction potentials. While the liquid-junction potentials between the dichloromethane and acetonitrile solutions amount to about 90 mV, for the benzonitrile-acetonitrile junctions, the potentials are only about 30 mV. The presented methods for analyzing the measured electrochemical characteristics of donors and acceptors illustrate a means for improved evaluation of the thermodynamics of chargetransfer systems.
Medium polarity plays a crucial role in charge-transfer processes and electrochemistry. The added supporting electrolyte in electrochemical setups, essential for attaining the needed electrical conductivity, sets challenges for estimating medium polarity. Herein, we resort to Lippert–Mataga–Ooshika (LMO) formalism for estimating the Onsager polarity of electrolyte organic solutions pertinent to electrochemical analysis. An amine derivative of 1,8-naphthalimide proves to be an appropriate photoprobe for LMO analysis. An increase in electrolyte concentration enhances the polarity of the solutions. This effect becomes especially pronounced for low-polarity solvents. Adding 100 mM tetrabutylammonium hexafluorophosphate to chloroform results in solution polarity exceeding that of neat dichloromethane and 1,2-dichloroethane. Conversely, the observed polarity enhancement that emerges upon the same electrolyte addition to solvents such as acetonitrile and N,N-dimethylformamide is hardly as dramatic. Measured refractive indices provide a means for converting Onsager to Born polarity, which is essential for analyzing medium effects on electrochemical trends. This study demonstrates a robust optical means, encompassing steady-state spectroscopy and refractometry, for characterizing solution properties important for charge-transfer science and electrochemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.