Abstract-in some languages like Classical Arabic (The language of the Holy Quran), phoneme duration is considered as a distinguishing cue in Quranic phonology. Phonological variation of phonemes occurrences contributes to an inaccurate pronunciation of phonemes and therefore inaccurate ASR system. Thus a good phonemes duration modeling can be an essential issue. Currently, the most effective models used in automatic speech recognition (ASR) systems are based on statistical approaches namely Hidden Markov Model (HMM). In standard HMM speech recognition framework, the duration information is poorly employed. However, previous studies have demonstrated that using an HMM with explicit duration modeling techniques have improved the recognition performances in many targeted languages. This paper presents an important phase of our ongoing work which aims to build an accurate Arabic recognizer for teaching and learning purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.