Human gut microbiome composition is shaped by multiple factors but the relative contribution of host genetics remains elusive. Here we examine genotype and microbiome data from 1,046 healthy individuals with several distinct ancestral origins who share a relatively common environment, and demonstrate that the gut microbiome is not significantly associated with genetic ancestry, and that host genetics have a minor role in determining microbiome composition. We show that, by contrast, there are significant similarities in the compositions of the microbiomes of genetically unrelated individuals who share a household, and that over 20% of the inter-person microbiome variability is associated with factors related to diet, drugs and anthropometric measurements. We further demonstrate that microbiome data significantly improve the prediction accuracy for many human traits, such as glucose and obesity measures, compared to models that use only host genetic and environmental data. These results suggest that microbiome alterations aimed at improving clinical outcomes may be carried out across diverse genetic backgrounds.
The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH). Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention.
Fine-mapping aims to identify causal variants impacting complex traits. Several recent methods improve fine-mapping accuracy by prioritizing variants in enriched functional annotations. However, these methods can only use information at genome-wide significant loci (or a small number of functional annotations), severely limiting the benefit of functional data. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy using genome-wide functional data for a broad set of coding, conserved, regulatory and LD-related annotations. PolyFun prioritizes variants in enriched functional annotations by specifying prior causal probabilities for fine-mapping methods such as SuSiE or FINEMAP, employing special procedures to ensure robustness to model misspecification and winner's curse. In simulations with in-sample LD, PolyFun + SuSiE and PolyFun + FINEMAP were well-calibrated and identified >20% more variants with posterior causal probability >0.95 than their non-functionally informed counterparts (and >33% more fine-mapped variants than previous functionally-informed fine-mapping methods). In simulations with mismatched reference LD, PolyFun + SuSiE remained well-calibrated when reducing the maximum number of assumed causal SNPs per locus, which reduces absolute power but still produces large relative improvements. In analyses of 49 UK Biobank traits (average N=318K) with insample LD, PolyFun + SuSiE identified 3,025 fine-mapped variant-trait pairs with posterior causal probability >0.95, a >32% improvement vs. SuSiE; 223 variants were fine-mapped for multiple genetically uncorrelated traits, indicating pervasive pleiotropy. We used posterior mean per-SNP heritabilities from PolyFun + SuSiE to perform polygenic localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for functional follow-up and provides insights into complex trait architectures..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.