A diaphragm-based interferometric fiber optical microelectromechanical system sensor with high sensitivity is designed and tested for on-line detection of the acoustic waves generated by partial discharges (PD) inside high-voltage power transformers. In principle, the sensor is made according to Fabry Perot interference, which is placed on a micro-machined rectangular silicon membrane as a pressure-sensitive element. A fiber-optic readout scheme has been used to monitor sensor membrane deflection. Sensor design, fabrication, characterization, and application in PD acoustic detection are described. Test results indicate that the fiber optical sensor is capable of detecting PD acoustic signals propagating inside transformer oil with high sensitivity.
Articles you may be interested inNanofabrication of high aspect ratio (50:1) sub-10nm silicon nanowires using inductively coupled plasma etching J. Vac. Sci. Technol. B 30, 06FF02 (2012); 10.1116/1.4755835Elaboration of high aspect ratio monocrystalline silicon suspended nanobridges by low temperature alkaline treatment of dry etched trenchesThe ability to predict and optimize the effects of the process parameters during silicon dry etching is vital for the fabrication of emerging hyperintegration technologies, as well as many microelectromechanical systems and integrated circuit devices. This article outlines the establishment of reactive ion etching protocols for fabrication of high aspect ratio trenches with minimum scalloping and undercut, employing the Bosch process. High aspect ratio submicron trench array patterns were transferred into silicon substrates using a Unaxis Versalock deep reactive ion etch tool equipped with a time multiplexed plasma etch/passivation cycle scheme which uses an inductively coupled plasma etcher. Through careful optimization of Bosch etch process conditions, successful etching of high aspect ratio ͑20:1͒ 170 nm trench features was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.