Abstract-High Level Synthesis (HLS) languages and tools are emerging as the most promising technique to make FPGAs more accessible to software developers. Nevertheless, picking the most suitable HLS for a certain class of algorithms depends on requirements such as area and throughput, as well as on programmer experience.In this paper, we explore the different trade-offs present when using a representative set of HLS tools in the context of Database Management Systems (DBMS) acceleration. More specifically, we conduct an empirical analysis of four representative frameworks (Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that we utilize to accelerate commonly-used database algorithms such as sorting, the median operator, and hash joins. Through our implementation experience and empirical results for database acceleration, we conclude that the selection of the most suitable HLS depends on a set of orthogonal characteristics, which we highlight for each HLS framework.
With the rise of Big Data, providing high-performance query processing capabilities through the acceleration of the database analytic has gained significant attention. Leveraging Field Programmable Gate Array (FPGA) technology, this approach can lead to clear benefits. In this work, we present the design and implementation of AxleDB: An FPGA-based platform that enables fast query processing for database systems by melding novel database-specific accelerators with commercial-off-the-shelf (COTS) storage using modern interfaces, in a novel, unified, and a programmable environment. AxleDB can perform a large subset of SQL queries through its set of instructions that can map compute-intensive database operations, such as filter, arithmetic, aggregate, group by, table join, or sort, on to the specialized high-throughput accelerators. To minimize the amount of SSD I/O operations required, AxleDB also supports hardware MinMax indexing for databases. We evaluated AxleDB with five decision support queries from the TPC-H benchmark suite and achieved a speedup from 1.8X to 34.2X and energy efficiency from 2.8X to 62.1X, in comparison to the state-of-the-art DBMS, i.e., PostgreSQL and MonetDB.The research leading to these results has received funding from the European Union Seventh Framework Program (FP7) (under the AXLE project GA number 318633), the Ministry of Economy and Competitiveness\ud
of Spain (under contract number TIN2015-65316-p), Turkish Ministry of Development TAM Project (number 2007K120610), and Bogazici University Scientific Projects (number 7060).Peer ReviewedPostprint (author's final draft
Abstract-In this paper we present HATCH, a novel hash join engine. We follow a new design point which enables us to effectively cache the hash table entries in fast BRAM resources, meanwhile supporting collision resolution in hardware. HATCH enables us to have the best of two worlds: (i) to use the full capacity of the DDR memory to store complete hash tables, and (ii) by employing a cache, to exploit the high access speed of BRAMs. We demonstrate the usefulness of our approach by running hash join operations from 5 TPC-H benchmark queries and report speedups up to 2.8x over a pipeline-optimized baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.