The aim of this study was to determine the effect of 12 weeks of training on the critical velocity and maximal lactate steady state of elite swimmers. The tests to determine critical velocity and maximal lactate steady state were performed before and after 12 weeks of training. Critical velocity after 12 weeks of training was significantly higher than before training (1.4590.10 m × s (1 vs. 1.4190.11 m × s (1 ). In contrast, no significant differences in the velocity at maximal lactate steady state were observed before and after training (1.4190.10 m × s (1 vs. 1.4390.10 m × s (1 ). There was also a decrease in mean lactate concentration after 12 weeks of training. Before training, the velocity at maximal lactate steady state occurred at 100% of critical velocity, with a mean lactate concentration of 4.34 mmol × l (1 . After training, the velocity at maximal lactate steady state occurred at 98% of critical velocity, with a reduced mean lactate concentration of 3.69 mmol × l (1 . Based on these results, it would appear that 12 weeks of training was enough to promote an increase in critical velocity. Although no significant differences in the velocity at maximal lactate steady state were observed before and after training, the decrease in mean lactate concentration after training demonstrated greater efficiency of the aerobic system, leading to less wear during the tests.
We investigated the effects of hand paddles and parachute on the relative duration of stroke phases and index of coordination of competitive crawl-strokers. Eleven male-swimmers (age: 21.9 ± 4.5 years; 50-m best time: 24.23 ± 0.75 s) were evaluated in four maximal-intensity conditions: without equipment, with hand paddles, with parachute, and with both hand paddles and parachute. Relative stroke phase duration of each arm, swimming velocity, and stroke rate were analysed from video (60 Hz). The index of coordination was quantified based on the lag time between propulsive phases of each arm, which defined the coordination mode as catch-up, opposition or superposition. The stroke rate decreased in all conditions (P < 0.05) and swimming velocity decreased with parachute and with paddles + parachutes (P < 0.05). The coordination mode changed from catch-up in free swimming (-2.3 ± 5.0%) to opposition with paddles (-0.2 ± 3.8%), parachute (0.1 ± 3.1%), and paddles + parachute (0.0 ± 3.2%). Despite these variations, no significant differences were observed in relative duration of right and left arm-stroke phases, or in index of coordination. We conclude that the external resistances analysed do not significantly influence stroke phase organization, but, as a chronic effect, may lead to greater propulsive continuity.
This study investigated the acute effects of different sizes of paddles on the force-time curve during tethered swimming and swimming velocity in front-crawl stroke. Fourteen male swimmers (20.0 ± 3.7 years; 100-m best time: 53.70 ± 0.87 s) performed two 10-s maximal efforts in tethered swimming to obtain peak force, average force, impulse, rate of force development, stroke duration and time to peak force. Swimming velocity, stroke rate and stroke length were obtained from two 25-m maximal swims. Both tests were repeated in five conditions: free swimming, wearing small (280 cm (2) ), medium (352 cm (2) ), large (462 cm (2) ) and extra-large (552 cm (2) ) hand paddles. Compared to free swimming, paddles provided significant increases of peak force (medium: 11.5%, large: 16.7%, extra-large: 21.7%), impulse (medium: 15.2%, large: 22.4%, extra-large: 30.9%), average force (medium: 5.1%, large: 7.5%), rate of force development (extra-large: 11.3%), stroke duration (medium: 9.3%, large: 11.8%, extra-large: 18.5%), time to peak force (medium: 11.1%, large: 15.9%, extra-large: 22.1%), swimming velocity (medium: 2.2%, large: 3.2%, extra-large: 3.7%) and stroke length (medium: 9.0%, large: 9.0%, extra-large: 14.8%), while stroke rate decreased (medium: -6.2%, large: -5.5%, extra-large: -9.5%). It is concluded that medium, large and extra-large paddles influence the force-time curve and change swimming velocity, suggesting these sizes may be useful for force development in water.
O objetivo deste estudo foi analisar a reprodutibilidade dos parâmetros biomecânicos da curva força-tempo do estilo "Crawl" em um protocolo de 10 s no nado atado. Dezesseis nadadores do sexo masculino (idade: 20,4 ± 4,0 anos; tempo na prova de 100 m livre: 53,68 ± 0,99 s) realizaram dois esforços máximos de 10 s no nado atado. Os parâmetros força pico, força média, taxa de desenvolvimento de força, impulso, duração da braçada, tempo para atingir a força pico e força mínima foram representados pela média de oito braçadas consecutivas obtidas em cada tentativa. Utilizou-se o teste t para observar as diferenças entre os esforços para cada parâmetro. O nível de significância estabelecido foi de 5%. A reprodutibilidade relativa foi medida pelo coeficiente de correlação de Pearson e a consistência entre as duas tentativas pelo coeficiente de correlação intraclasse (CCI). A reprodutibilidade absoluta foi verificada pelo coeficiente de variação (CV). Não foi demonstrada diferença estatisticamente significante para nenhum parâmetro biomecânico quando comparados os dois esforços. Os elevados CCI e baixos CV indicaram alta consistência interna dos parâmetros analisados. Conclui-se que os parâmetros biomecânicos analisados a partir do nado atado são reprodutíveis quando empregado protocolo de curta duração o que demonstra a possibilidade de utilização do protocolo com alto grau de confiabilidade, por parte de treinadores e atletas.
This study investigated the effects of hand paddles, parachute and hand paddles plus parachute on the inter-limb coordination of butterfly swimming. Thirteen male swimmers were evaluated in four random maximal intensity conditions: without equipment, with hand paddles, with parachute and with hand paddles + parachute. Arm and leg stroke phases were identified by 2D video analysis to calculate the total time gap (T1: time between hands' entry in the water and high break-even point of the first undulation; T2: time between the beginning of the hand's backward movement and low break-even point of the first undulation; T3: time between the hand's arrival in a vertical plane to the shoulders and high break-even point of the second undulation; T4: time between the hand's release from the water and low break-even point of the second undulation). The swimming velocity was reduced and T1, T2 and T3 increased in parachute and hand paddles + parachute. No changes were observed in T4. Total time gap decreased in parachute and hand paddles + parachute. It is concluded that hand paddles do not influence the arm-to-leg coordination in butterfly, while parachute and hand paddles + parachute do change it, providing a greater propulsive continuity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.