a b s t r a c tCyanobacteria are significant contributors to global photosynthetic productivity, thus making it relevant to study how the different environmental stresses can alter their physiological activities. Here, we review the current research work on the response of cyanobacteria to different kinds of stress, mainly focusing on their response to metal stress as studied by using the modern proteomic tools. We also report a proteomic analysis of plastocyanin and cytochrome c 6 deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803 grown under copper or iron deprivation, as compared to wild-type cells, so as to get a further understanding of the metal homeostasis in cyanobacteria and their response to changing environmental conditions.
Cyanobacteria, which are considered to be the chloroplast precursors, are significant contributors to global photosynthetic productivity. The ample variety of membrane and soluble proteins containing different metals (mainly, iron and copper) has made these organisms develop a complex homeostasis with different mechanisms and tight regulation processes to fulfil their metal requirements in a changing environment. Cell metabolism is so adapted as to synthesize alternative proteins depending on the relative metal availabilities. In particular, plastocyanin, a copper protein, and cytochrome c(6), a haem protein, can replace each other to play the same physiological role as electron carriers in photosynthesis and respiration, with the synthesis of one protein or another being regulated by copper concentration in the medium. The unicellular cyanobacterium Synechocystis sp. PCC 6803 has been widely used as a model system because of completion of its genome sequence and the ease of its genetic manipulation, with a lot of proteomic work being done. In this review article, we focus on the functional characterization of knockout Synechocystis mutants for plastocyanin and cytochrome c(6), and discuss the ongoing proteomic analyses performed at varying copper concentrations to investigate the cyanobacterial metal homeostasis and cell response to changing environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.