The fruit and seed morphology of 24 species, representing seven genera of Solanaceae were investigated by using a binocular stereomicroscope and scanning electron microscopy (SEM), to determine the significance of fruit and seed coat features as taxonomic characters. Morphological characters, including color, texture, shape, fruit type, hilum position, anticlinal shape and periclinal shape. There were three major patterns of seed ornamentation: irregular reticulate, regular reticulate and verrucate reticulate. The dendrogram showed that species could be grouped into two major clusters, the first cluster (I) contains 15 species and divided into two groups, while the second cluster (II) contains nine species that can be divided into two groups. The data proved useful in the construction of a dichotomous indented key to the studied species. Twenty characters were used to create systematic Key using DELTA key-generating programs. The results indicate that the morphological characteristics of fruits and seeds would be helpful for the identification of Solanaceae species.
This present study includes twelve species that represent the Ficus genus, namely; aspera, carica, tinctoria subsp. gibbosa, hirta, hispida, neriifolia, palmata, pumila, racemosa, septica, sur, and sycomorus, belonging to the Moraceae family. The species samples were collected from various locations in Egypt. The study focused on the anatomical and molecular characteristics of mature foliage leaves. Since the identification and classification of taxa are highly dependent on the anatomical features of leaves, the anatomical characteristics were recorded in the form of a comparison between the examined plants in the data matrix. This study aims to contribute to the identification of the studied species based on the anatomical details of the matured leaves. Anatomical characterization includes the variations in upper and lower epidermal layers that are covered by a thin or thick cuticle; the number of palisade and spongy layers; crystals; secretory elements; lithocysts; the midrib zone has parenchyma associated with mechanical tissue, vascular system, and investigation of trichomes; on the other hand, in the current study, the phylogenetic analysis was conducted by using the ITS and 5.8 S sequences. From the analysis of all the available data, it could be stated that there is an overall agreement with the anatomical character dendrogram.
The verification of taxonomic identities is of the highest significance in the field of biological study and categorization. Morpho-molecular characterization can clarify uncertainties in distinguishing between taxonomic groups. In this study, we characterized five local taxa of the genus Cichorium using morphological and molecular markers for taxonomic authentication and probably future genetic improvement. The five Cichorium taxa grown under the Mediterranean climate using morphological traits and molecular markers showed variations. The examined taxa showed a widespread range of variations in leaf characteristics, i.e., shape, type, texture, margin, and apex and cypsela characteristics i.e., shape, color, and surface pattern. The phylogenetic tree categorized the Cichorium intybus var. intybus and C. intybus var. foliosum in a single group, whereas C. endivia var. endivia was grouped separately. However, C. endivia var. crispum and C. endivia subsp. pumilum were classified as a cluster. The recorded variance between classes using the molecular markers SCoT, ISSR, and RAPD was documented at 34.43%, 36.62%, and 40.34%, respectively. Authentication using molecular tools proved the usefulness of a dichotomous indented key, as revealed by morphological identification. The integrated methodology using morphological and molecular assessment could support improved verification and authentication of the various taxa of chicory. It seems likely that the Egyptian chicory belongs to C. endivia subsp. pumilum.
Among the 70–80 species of the genus Lycium (family Solanaceae) disjunctly distributed around the world, only three are frequently distributed in different locations in Egypt. Due to the morphological similarities between these three species, there is a need for alternative tools to distinguish them. Thus, the objective of this study was to revise the taxonomic features of Lycium europaeum L., Lycium shawii Roem. & Schult., and Lycium schweinfurthii var. aschersonii (Dammer) Feinbrun in consideration of their anatomical, metabolic, molecular, and ecological characteristics. In addition to analysis of their anatomical and ecological features, DNA barcoding was performed for molecular characterization through internal transcribed spacer (ITS) sequencing and start codon targeted (SCoT) markers. Furthermore, metabolic profiling of the studied species was conducted based on gas chromatography–mass spectrometry (GC-MS). The observed anatomical features of the adaxial and abaxial epidermal layers, type of mesophyll, crystals, number of palisade and spongy layers, and the vascular system showed variations between the studied species. Beyond this, the anatomy of the leaves showed an isobilateral structure in the studied species, without distinct differences. Species were molecularly identified in terms of ITS sequences and SCoT markers. The ITS sequences were deposited in GenBank with accession numbers ON149839.1, OP597546.1, and ON521125.1 for L. europaeum L., L. shawii, and L. schweinfurthii var. aschersonii, respectively. The sequences showed variations in GC content between the studied species; this was 63.6% in L. europaeum, 61.53% in L. shawii, and 63.55% in L. schweinfurthii var. aschersonii. A total of 62 amplified fragments, including 44 polymorphic fragments with a ratio of 70.97%, were obtained in the SCoT analysis, as well as unique amplicons in L. europaeum L., shawii, and L. schweinfurthii var. aschersonii of 5, 11, and 4 fragments, respectively. Through GC-MS profiling, 38 compounds were identified with clear fluctuations in the extracts of each species. Of these, 23 were distinguishing chemicals that could help in chemical identification of the extracts of the studied species. The present study succeeds in identifying alternative clear and diverse characteristics that can be used to distinguish between L. europaeum, L. shawii, and L. schweinfurthii var. aschersonii.
The pollen morphology and seed protein electrophoresis of 24 species, representing seven genera of Solanaceae were studied to determine the significance as taxonomic characters. Pollen morphological characters: including type, size, shape and ornamentation were investigated by using light and scanning electron microscopy (SEM). The pollen differed in type, size and shape and also seven types of ornamentation were recorded in the different species in this study. The storage seed protein was determined by using gel electrophoresis. The number of protein bands was detected with different molecular weights and ranged from 25 KDa to 77 KDa. The results of the two criteria were represented in the dendrogram which showed that species grouped into two major clusters, the first cluster (I) contains 12 species, while the second cluster (II) comprises 12 species and which can be divided into two groups. The results indicate that the morphological characteristics of pollen morphology and seed protein electrophoresis appeared to be of significant importance in differentiation and identification of studied taxa of Solanaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.