Divacancy spins implement qubits with outstanding characteristics and capabilities in an industrial semiconductor host. On the other hand, there are still numerous open questions about the physics of these important defects, for instance, spin relaxation has not been thoroughly studied yet. Here, we carry out a theoretical study on environmental spin-induced spin relaxation processes of divacancy qubits in the 4H polytype of silicon carbide (4H-SiC). We reveal all the relevant magnetic field values where the longitudinal spin relaxation time T1 drops resonantly due to the coupling to either nuclear spins or electron spins. We quantitatively analyze the dependence of the T1 time on the concentration of point defect spins and the applied magnetic field and provide an analytical expression. We demonstrate that dipolar spin relaxation plays a significant role both in as-grown and ion-implanted samples and it often limits the coherence time of divacancy qubits in 4H-SiC.
Paramagnetic defects and nuclear spins are the major sources of magnetic field-dependent spin relaxation in point defect quantum bits. The detection of related optical signals has led to the development of advanced relaxometry applications with high spatial resolution. The nearly degenerate quartet ground state of the silicon vacancy qubit in silicon carbide (SiC) is of special interest in this respect, as it gives rise to relaxation rate extrema at vanishing magnetic field values and emits in the first near-infra-red transmission window of biological tissues, providing an opportunity for developing novel sensing applications for medicine and biology. However, the relaxation dynamics of the silicon vacancy center in SiC have not yet been fully explored. In this paper, we present results from a comprehensive theoretical investigation of the dipolar spin relaxation of the quartet spin states in various local spin environments. We discuss the underlying physics and quantify the magnetic field and spin bath dependent relaxation time T 1 . Using these findings we demonstrate that the silicon vacancy qubit in SiC can implement microwave-free low magnetic field quantum sensors of great potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.