A global warming of 2 • C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change. The possible changes in regional climate under this target level of global warming have so far not been investigated in detail. Using an ensemble of 15 regional climate simulations downscaling six transient global climate simulations, we identify the respective time periods corresponding to 2 • C global warming, describe the range of projected changes for the European climate for this level of global warming, and investigate the uncertainty across the multi-model ensemble. Robust changes in mean and extreme temperature, precipitation, winds and surface energy budgets are found based on the ensemble of simulations. The results indicate that most of Europe will experience higher warming than the global average. They also reveal strong distributional patterns across Europe, which will be important in subsequent impact assessments and adaptation responses in different countries and regions. For instance, a North-South (West-East) warming gradient is found for summer (winter) along with a general increase in heavy precipitation and summer extreme temperatures. Tying the ensemble analysis to time periods with a prescribed global temperature change rather than fixed time periods allows for the identification of more robust regional patterns of temperature changes due to removal of some of the uncertainty related to the global models' climate sensitivity.
Abstract. The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. NorESM2 is based on the second version of the Community Earth System Model (CESM2) and shares with CESM2 the computer code infrastructure and many Earth system model components. However, NorESM2 employs entirely different ocean and ocean biogeochemistry models. The atmosphere component of NorESM2 (CAM-Nor) includes a different module for aerosol physics and chemistry, including interactions with cloud and radiation; additionally, CAM-Nor includes improvements in the formulation of local dry and moist energy conservation, in local and global angular momentum conservation, and in the computations for deep convection and air–sea fluxes. The surface components of NorESM2 have minor changes in the albedo calculations and to land and sea-ice models. We present results from simulations with NorESM2 that were carried out for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Two versions of the model are used: one with lower (∼ 2∘) atmosphere–land resolution and one with medium (∼ 1∘) atmosphere–land resolution. The stability of the pre-industrial climate and the sensitivity of the model to abrupt and gradual quadrupling of CO2 are assessed, along with the ability of the model to simulate the historical climate under the CMIP6 forcings. Compared to observations and reanalyses, NorESM2 represents an improvement over previous versions of NorESM in most aspects. NorESM2 appears less sensitive to greenhouse gas forcing than its predecessors, with an estimated equilibrium climate sensitivity of 2.5 K in both resolutions on a 150-year time frame; however, this estimate increases with the time window and the climate sensitivity at equilibration is much higher. We also consider the model response to future scenarios as defined by selected Shared Socioeconomic Pathways (SSPs) from the Scenario Model Intercomparison Project defined under CMIP6. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.0, and 3.9 K in NorESM2-LM, and 1.3, 2.1, 3.1, and 3.9 K in NorESM-MM, robustly similar in both resolutions. NorESM2-LM shows a rather satisfactory evolution of recent sea-ice area. In NorESM2-LM, an ice-free Arctic Ocean is only avoided in the SSP1-2.6 scenario.
Convection-permitting climate models have shown superior performance in simulating important aspects of the precipitation climate including extremes and also to give partly different climate change signals compared to coarser-scale models. Here, we present the first long-term (1998–2018) simulation with a regional convection-permitting climate model for Fenno-Scandinavia. We use the HARMONIE-Climate (HCLIM) model on two nested grids; one covering Europe at 12 km resolution (HCLIM12) using parameterized convection, and one covering Fenno-Scandinavia with 3 km resolution (HCLIM3) with explicit deep convection. HCLIM12 uses lateral boundaries from ERA-Interim reanalysis. Model results are evaluated against reanalysis and various observational data sets, some at high resolutions. HCLIM3 strongly improves the representation of precipitation compared to HCLIM12, most evident through reduced “drizzle” and increased occurrence of higher intensity events as well as improved timing and amplitude of the diurnal cycle. This is the case even though the model exhibits a cold bias in near-surface temperature, particularly for daily maximum temperatures in summer. Simulated winter precipitation is biased high, primarily over complex terrain. Considerable undercatchment in observations may partly explain the wet bias. Examining instead the relative occurrence of snowfall versus rain, which is sensitive to variance in topographic heights it is shown that HCLIM3 provides added value compared to HCLIM12 also for winter precipitation. These results, indicating clear benefits of convection-permitting models, are encouraging motivating further exploration of added value in this region, and provide a valuable basis for impact studies.
Abstract. This paper presents a new version of HCLIM, a regional climate modelling system based on the ALADIN–HIRLAM numerical weather prediction (NWP) system. HCLIM uses atmospheric physics packages from three NWP model configurations, HARMONIE–AROME, ALARO and ALADIN, which are designed for use at different horizontal resolutions. The main focus of HCLIM is convection-permitting climate modelling, i.e. developing the climate version of HARMONIE–AROME. In HCLIM, the ALADIN and ALARO configurations are used for coarser resolutions at which convection needs to be parameterized. Here we describe the structure and development of the current recommended HCLIM version, cycle 38. We also present some aspects of the model performance. HCLIM38 is a new system for regional climate modelling, and it is being used in a number of national and international projects over different domains and climates ranging from equatorial to polar regions. Our initial evaluation indicates that HCLIM38 is applicable in different conditions and provides satisfactory results without additional region-specific tuning. HCLIM is developed by a consortium of national meteorological institutes in close collaboration with the ALADIN–HIRLAM NWP model development. While the current HCLIM cycle has considerable differences in model setup compared to the NWP version (primarily in the description of the surface), it is planned for the next cycle release that the two versions will use a very similar setup. This will ensure a feasible and timely climate model development as well as updates in the future and provide an evaluation of long-term model biases to both NWP and climate model developers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.