Objective: To assess the inter-rater and intra-rater reliability and validity of the original and a modified Medical Research Council scale for testing muscle strength in radial palsy. Design: Prospective, randomized validation study Patients: Thirty-one patients with peripheral paresis of radial innervated forearm muscles were included. Methods: Wrist extension, finger extension and grip strength were evaluated by manual muscle testing. Dynamometric measurement of grip strength was performed. Pair-wise weighted kappa coefficients were calculated to determine inter-rater and intra-rater reliability. The 2 scores were compared using the signed-rank test.
Objective: To examine whether a whole-body vibration (mechanical oscillations) in comparison to a placebo administration leads to better postural control, mobility and balance in patients with multiple sclerosis. Design: Double-blind, randomized controlled trial. Setting: Outpatient clinic of a university department of physical medicine and rehabilitation. Subjects: Twelve multiple sclerosis patients with moderate disability (Kurtzke's Expanded Disability Status Scale 2.5-5) were allocated either to the intervention group or to the placebo group. Interventions: In the intervention group a whole-body vibration at low frequency (2.0-4.4 Hz oscillations at 3-mm amplitude) in five series of 1 min each with a 1 -min break between the series was applied. In the placebo group a Burst-transcutaneous electrical nerve stimulation (TENS) application on the nondominant forearm in five series of 1 min each with a 1-min break between the series was applied as well. Main outcome measures: Posturographic assessment using the Sensory Organization Test, the Timed Get Up and Go Test and the Functional Reach Test immediately preceding the application, 15 min, one week and two weeks after the application. The statistical analysis was applied to the change score from preapplication values to values 15 min, one week and two weeks post intervention. Results: Compared with the placebo group the intervention group showed advantages in terms of the Sensory Organization Test and the Timed Get Up and Go Test at each time point of measurement after the application. The effects were strongest one week after the intervention, where significant differences for the change score (p = 0.041) were found for the Timed Get Up and Go Test with the mean score reducing from 9.2 s (preapplication) to 8.2 s one week after whole-body vibration and increasing from 9.5 s (preapplication) to 10.2 s one week after placebo application. The mean values of the posturographic assessment increased from 70.5 points (preapplication) to 77.5 points one week after whole body vibration and increased only from 67.2 points (preapplication) to 67.5 points one week after the placebo application. No differences were found for the Functional Reach Test. Conclusion: The results of this pilot study indicated that whole-body vibration may positively influence the postural control and mobility in multiple sclerosis patients.
Pulsed electromagnetic fields improve clinical scores and function in patients with osteoarthritis of the knee and should be considered as adjuvant therapies in their management. There is still equipoise of evidence for an effect on pain in the current literature.
The aim of this educational review is to provide an overview of the clinical application of transcutaneous electrical stimulation of the extremities in patients with upper motor neurone lesions. In general two methods of electrical stimulation can be distinguished: (i) therapeutic electrical stimulation, and (ii) functional electrical stimulation. Therapeutic electrical stimulation improves neuromuscular functional condition by strengthening muscles, increasing motor control, reducing spasticity, decreasing pain and increasing range of motion. Transcutaneous electrical stimulation may be used for neuromuscular electrical stimulation inducing repetitive muscle contraction, electromyography-triggered neuromuscular electrical stimulation, position-triggered electrical stimulation and subsensory or sensory transcutaneous electric stimulation. Functional electrical stimulation provokes muscle contraction and thereby produces a functionally useful movement during stimulation. In patients with spinal cord injuries or stroke, electrical upper limb neuroprostheses are applied to enhance upper limb and hand function, and electrical lower limb neuroprostheses are applied for restoration of standing and walking. For example, a dropped foot stimulator is used to trigger ankle dorsiflexion to restore gait function. A review of the literature and clinical experience of the use of therapeutic electrical stimulation as well as of functional electrical stimulation in combination with botulinum toxin, exercise therapy and/or splinting are presented. Although the evidence is limited we conclude that neuromuscular electrical stimulation in patients with central nervous system lesions can be an effective modality to improve function, and that combination with other treatments has an additive therapeutic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.