SummaryAutomated microscopy to detect Mycobacterium tuberculosis in sputum smear slides would enable laboratories in countries with a high tuberculosis burden to cope efficiently with large numbers of smears. Focusing is a core component of automated microscopy, and successful autofocusing depends on selection of an appropriate focus algorithm for a specific task. We examined autofocusing algorithms for bright-field microscopy of Ziehl-Neelsen stained sputum smears. Six focus measures, defined in the spatial domain, were examined with respect to accuracy, execution time, range, full width at half maximum of the peak and the presence of local maxima. Curve fitting around an estimate of the focal plane was found to produce good results and is therefore an acceptable strategy to reduce the number of images captured for focusing and the processing time. Vollath's F 4 measure performed best for full z-stacks, with a mean difference of 0.27 µm between manually and automatically determined focal positions, whereas it is jointly ranked best with the Brenner gradient for curve fitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.