We demonstrate a microplate platform for parallelized manipulation of particles or cells by frequency-modulated ultrasound. The device, consisting of a silicon-glass microchip and a single ultrasonic transducer, enables aggregation, positioning and high-resolution microscopy of cells distributed in an array of 100 microwells centered on the microchip. We characterize the system in terms of temperature control, aggregation and positioning efficiency, and cell viability. We use time-lapse imaging to show that cells continuously exposed to ultrasound are able to divide and remain viable for at least 12 hours inside the device. Thus, the device can be used to induce and maintain aggregation in a parallelized fashion, facilitating long-term microscopy studies of, e.g., cell-cell interactions.
New markers are constantly emerging that identify smaller and smaller subpopulations of immune cells. However, there is a growing awareness that even within very small populations, there is a marked functional heterogeneity and that measurements at the population level only gives an average estimate of the behaviour of that pool of cells. New techniques to analyze single immune cells over time are needed to overcome this limitation. For that purpose, we have designed and evaluated microwell array systems made from two materials, polydimethylsiloxane (PDMS) and silicon, for high-resolution imaging of individual natural killer (NK) cell responses. Both materials were suitable for short-term studies (<4 hours) but only silicon wells allowed long-term studies (several days). Time-lapse imaging of NK cell cytotoxicity in these microwell arrays revealed that roughly 30% of the target cells died much more rapidly than the rest upon NK cell encounter. This unexpected heterogeneity may reflect either separate mechanisms of killing or different killing efficiency by individual NK cells. Furthermore, we show that high-resolution imaging of inhibitory synapse formation, defined by clustering of MHC class I at the interface between NK and target cells, is possible in these microwells. We conclude that live cell imaging of NK-target cell interactions in multi-well microstructures are possible. The technique enables novel types of assays and allow data collection at a level of resolution not previously obtained. Furthermore, due to the large number of wells that can be simultaneously imaged, new statistical information is obtained that will lead to a better understanding of the function and regulation of the immune system at the single cell level.
We demonstrate flow-free transport of cells and particles by the use of frequency-modulated ultrasonic actuation of a microfluidic chip. Two different modulation schemes are combined: A rapid (1 kHz) linear frequency sweep around approximately 6.9 MHz is used for two-dimensional spatial stabilization of the force field over a 5 mm long inlet channel of constant cross section, and a slow (0.2-0.7 Hz) linear frequency sweep around approximately 2.6 MHz is used for flow-free ultrasonic transport and positioning of cells or particles. The method is used for controlling the motion and position of cells monitored with high-resolution optical microscopy, but can also be used more generally for improving the robustness and performance of ultrasonic manipulation micro-devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.