The residual stress state of brazed ceramic/metal compounds is described by means of X‐ray residual stress determinations and analytical calculations using a model of three elastic infinite plates. It is shown that the residual stress state of the soldered compound depends on the materials combination and on the geometrical conditions. The combination of X‐ray residual stress measurements and analytical calculations allows decisions on whether the assumption of a linear elastic model, based on elementary bending theory, is valid for the particular compounds.
A fracture mechanical treatment of free edge stress singularities applied to a brazed ceramic]metal compound Abstract. The theoretical fracture mechanical treatment of crack problems in regular stress fields is extended to account for singular stresses as occur in bi-material systems whenever a discontinuity in material properties and geometry exists. The singular stress fields are derived for arbitrary material combination and geometry and the global stress state as occurs in a real compound is obtained by Finite Element (FE) calculations. Then especially the mode I stress intensity factors are calculated for-semi-elliptical surface cracks in the ceramic component of a brazed ceramic/metal joint. Critical crack sizes are determined for failure analysis of the compound.
The prediction of the plastic collapse load of cylindrical pressure vessels is very often made by using expensive Finite Element computations. The calculation of the collapse load requires an elastic-plastic material model and the consideration of non-linear geometry effects. The plastic collapse load causes overall structural instability and cannot be determined directly from a Finite Element analysis. In the present paper the plastic collapse load for a cylindrical pressure vessel is determined by an analytical method based on a linear elastic perfectly plastic material model. When plasticity occurs the material is considered to be incompressible and the tensor of plastic strains to be parallel to the stress deviator tensor. In this case the finite stress-strain relationships of Henkel can be used for calculating the pressure for which plastic flow occurs. The analytical results are completely confirmed by Finite Element predictions.
The prediction of the plastic collapse load of cylindrical pressure vessels is very often made by using expensive Finite Element Computations. The calculation of the collapse load requires an elastic-plastic material model and the consideration of non-linear geometry effects. The plastic collapse load causes overalls structural instability and cannot be determined directly from a finite element analysis. The ASME (2007) code recommends that the collapse load should be the load for which the numerical solution does not converge. This load can be only determined approximately if a expensive nonlinear analysis consisting of a very large number of sub steps is done. The last load sub step leading to a convergent solution will be taken as the critical load for the structure. In the instability regime no standard finite element solution can be found because of the lack of convergence of the numerical procedure. Other methods for the calculation of the allowable pressure proposed by the ASME code are the elastic stress analysis and the limit load analysis. In the present paper the plastic collapse load for a cylindrical pressure vessel is determined by an analytical method based on a linear elastic perfectly plastic material model. When plasticity occurs the material is considered as incompressible and the tensor of plastic strains is parallel to the stress deviator tensor. In that case the finite stress-strain relationships of Henkel can be used for calculating the pressure for which plastic flow occurs at the inside of the vessel wall or in the case of full plasticity in the wall. The analytical results are fully confirmed by finite element predictions both for axisymmetric and high costs three dimensional models. The analytical model can be used for fast predictions of the allowable load for the design of a large variety of pressure vessels under safety considerations. The accuracy of the predicted collapse load largely depends on the quality of the temperature dependent wall material data used both in the analytical and numerical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.