The Challenge on Liver Ultrasound Tracking (CLUST) was held in conjunction with the MICCAI 2014 conference to enable direct comparison of tracking methods for this application. This paper reports the outcome of this challenge, including setup, methods, results and experiences. The database included 54 2D and 3D sequences of the liver of healthy volunteers and tumor patients under free breathing. Participants had to provide the tracking results of 90% of the data (test set) for pre-defined point-landmarks (healthy volunteers) or for tumor segmentations (patient data). In this paper we compare the best six methods which participated in the challenge. Quantitative evaluation was performed by the organizers with respect to manual annotations. Results of all methods showed a mean tracking error ranging between 1.4 mm and 2.1 mm for 2D points, and between 2.6 mm and 4.6 mm for 3D points. Fusing all automatic results by considering the median tracking results, improved the mean error to 1.2 mm (2D) and 2.5 mm (3D). For all methods, the performance is still not comparable to human inter-rater variability, with a mean tracking error of 0.5–0.6 mm (2D) and 1.2–1.8 mm (3D). The segmentation task was fulfilled only by one participant, resulting in a Dice coefficient ranging from 76.7% to 92.3%. The CLUST database continues to be available and the online leader-board will be updated as an ongoing challenge.
A plethora of techniques for cardiac deformation imaging with 3D ultrasound, typically referred to as 3D speckle tracking techniques, are available from academia and industry. Although the benefits of single methods over alternative ones have been reported in separate publications, the intrinsic differences in the data and definitions used makes it hard to compare the relative performance of different solutions. To address this issue, we have recently proposed a framework to simulate realistic 3D echocardiographic recordings and used it to generate a common set of ground-truth data for 3D speckle tracking algorithms, which was made available online. The aim of this study was therefore to use the newly developed database to contrast non-commercial speckle tracking solutions from research groups with leading expertise in the field. The five techniques involved cover the most representative families of existing approaches, namely block-matching, radio-frequency tracking, optical flow and elastic image registration. The techniques were contrasted in terms of tracking and strain accuracy. The feasibility of the obtained strain measurements to diagnose pathology was also tested for ischemia and dyssynchrony.
We describe an algorithm for 3D interactive image segmentation by non-rigid implicit template deformation, with two main original features. First, our formulation incorporates user input as inside/outside labeled points to drive the deformation and improve both robustness and accuracy. This yields inequality constraints, solved using an Augmented Lagrangian approach. Secondly, a fast implementation of nonrigid template-to-image registration enables interactions with a real-time visual feedback. We validated this generic technique on 21 Contrast-Enhanced Ultrasound images of kidneys and obtained accurate segmentation results (Dice> 0.93) in less than 3 clicks in average.
We use a Hierarchical Partition of Unity Finite Element Method (H-PUFEM) to represent and analyse the non-rigid deformation fields involved in multidimensional image registration. We make use of the Ritz-Galerkin direct variational method to solve non-rigid image registration problems with various deformation constraints. In this method, we directly seek a set of parameters that minimizes the objective function. We thereby avoid the loss of information that may occur when an Euler-Lagrange formulation is used. Experiments are conducted to demonstrate the advantages of our approach when registering synthetic images having little of or no localizing features. As a special case, conformal mapping problems can be accurately solved in this manner. We also illustrate our approach with an application to Cardiac Magnetic Resonance temporal sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.