A 16-element phased-array receiver has been developed for advanced W-band automotive radars. The phased-array receiver is based on a single SiGe chip with RF beamforming capabilities, which is packaged using low-cost bond-wire techniques and attached to a 16-element linear microstrip array. The antenna results in a directivity of 29.3 dB and a gain of 28.0 dB at 77-81 GHz, and can be scanned to 50 in the azimuth plane in 1 steps. The packaging details are presented together with the steps taken to ensure a wideband impedance match and low coupling between the phased-array channels. Gain measurements done at 79 GHz agree well with simulations. The 16-element phased array receiver was used with a 2-element frequency-modulated continuous-wave transmitter at 76.5-77 GHz and high-resolution millimeter-wave images were obtained. The work shows that complex millimeter-wave phased arrays can be packaged using traditional bond-wire techniques, and can be a powerful solution for advanced automotive radars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.