A potyvirus (proposed name of Zea mosaic virus [ZeMV]) isolated from maize in Israel was analyzed by serology, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of capsid proteins, symptomatology, and sequencing. Parts of the nuclear inclusion b, coat protein, and 3' regions were sequenced; the amino acid sequence of ZeMV capsid was determined by time-of-flight mass spectrometry (TOFMS). The results of these analyses were compared with those of similar analyses of the following potyviruses: Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus strain MDB (SCMV-MDB), Johnsongrass mosaic virus(JGMV), Sorghum mosaic virus (SrMV), and an isolate of MDMV from Israel. Indirect enzyme-linked immunosorbent assay using ZeMV antiserum detected only ZeMV, and reciprocal tests using MDMV, JGMV, or SrMV antisera failed to detect ZeMV. ZeMV cross-reacted weakly when SCMV-MDB antiserum was used. The mass of ZeMV capsid was determined to be 36,810 Da by SDS-PAGE and 34,216 Da by TOFMS. The ZeMV systemically infected johnsongrass (Sorghum halepense), but did not infect oat (Avena sativa), pearl millet (Pennisetum glaucum), barley (Hordeum vulgare), or rye (Secale cereale). Necrosis was caused in 19 sorghum lines by SrMV, in 15 by ZeMV, in 14 by MDMV, and in 5 by JGMV and SCMV-MDB. The nucleic acid and amino acid sequences of ZeMV clearly showed that it is not a strain of JGMV, MDMV, SCMV, or SrMV.
Abstract. In the rhizosphere, the uptake of low-molecular-weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relative to total uptake is important, organic C uptake is supposed to be low relative to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and to what extent organically derived C absorbed by grass roots can feed the C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled amino acids (AAs) to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C excess and 15N excess) in the roots, stems and leaves as well as phytoliths were measured relative to a control experiment in which no labeled AAs were added. Additionally, the 13C excess was measured at the molecular level, in AAs extracted from roots and stems and leaves. The net uptake of labeled AA-derived 13C reached 4.5 % of the total AA 13C supply. The amount of AA-derived 13C fixed in the plant was minor but not nil (0.28 and 0.10 % of total C in roots and stems/leaves, respectively). Phenylalanine and methionine that were supplied in high amounts to the nutritive solution were more 13C-enriched than other AAs in the plant. This strongly suggested that part of AA-derived 13C was absorbed and translocated into the plant in its original AA form. In phytoliths, AA-derived 13C was detected. Its concentration was on the same order of magnitude as in bulk stems and leaves (0.15 % of the phytolith C). This finding strengthens the body of evidences showing that part of organic compounds occluded in phytoliths can be fed by C entering the plant through the roots. Although this experiment was done in nutrient solution and its relevance for soil C uptake assessment is therefore limited, we discuss plausible forms of AA-derived 13C absorbed and translocated in the plant and eventually fixed in phytoliths, and implications of our results for our understanding of the C cycle at the soil–plant–atmosphere interface
In this study, we evaluated trimethylsilyl (TMS) derivatives as derivatization reagents for the compound-specific stable carbon isotope analysis of soil amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). We used non-proteinogenic amino acids to show that the extraction-derivatization-analysis procedure provides a reliable method to measure δ(13)C values of amino acids extracted from soil. However, we found a number of drawbacks that significantly increase the final total uncertainty. These include the following: production of multiple peaks for each amino acid, identified as di-, tri- and tetra-TMS derivatives; a number of TMS-carbon (TMS-C) atoms added lower than the stoichiometric one, possibly due to incomplete combustion; different TMS-C δ(13)C for di-, tri- and tetra-TMS derivatives. For soil samples, only four amino acids (leucine, valine, threonine and serine) provide reliable δ(13)C values with a total average uncertainty of 1.3 ‰. We conclude that trimethylsilyl derivatives are only suitable for determining the (13)C incorporation in amino acids within experiments using (13)C-labelled tracers but cannot be applied for amino acids with natural carbon isotope abundance until the drawbacks described here are overcome and the measured total uncertainty significantly decreased.
Four potyviruses have been reported to infect Poaceae: maize dwarf mosaic virus (MDMV), sugarcane mosaic virus (SCMV), johnsongrass mosaic virus (JGMV) and sorghum mosaic virus (SrMV). A procedure was developed to assess the potential presence of potyviruses in a Poaceae‐infected sample, and then to determine which potyvirus species (one or more) were present. The first step was potyvirus‐group specific and following total RNA extraction, reverse transcription and polymerase chain reaction, it yielded a 327 nucleotide fragment spanning MVWCIEN to QMKAAA conserved motifs in the core of the capside gene. Enzymatic restriction of this fragment with the two endonucleases AluI and DdeI gave virus‐specific patterns. This method was shown to be efficient for dealing with well‐characterized strains and field collected isolates and useful for determining co‐infections and detecting a new potyvirus infecting maize.
cDNA complementary to the 3'-terminal half of RNA 1 of wheat spindle streak mosaic virus (WSSMV) from Southern France has been cloned and sequenced. One large open reading frame (ORF) of 4410 nucleotides and a nontranslated region (NTR) of 213 nucleotides at the 3'-end excluding the poly(A)-tail were found. Because of the amino acid sequence homology to the polyprotein of barley yellow mosaic virus (BaYMV) RNA 1, the encoded polyprotein of the sequenced region of WSSMV is supposed to comprise the C-terminal part of the putative cytoplasmic inclusion (CI) protein, the nuclear inclusion a (NIa) proteinase, the (NIb) RNA-polymerase and the capsid protein. The first 19 N-terminal amino acids of the capsid protein were determined by direct sequencing of proteins of purified WSSMV particles and confirmed this hypothesis. The deduced capsid protein has 294 amino acids and shows 74% identity with the BaYMV capsid protein sequence. This high sequence homology with BaYMV, in addition to the significant identities with barley mild mosaic virus (BaMMV, 35%) and its marginal homology to capsid protein sequences of aphid and mite-borne potyviruses (22-24%), supports the classification of WSSMV as a distinct member of the genus Baymovirus, family Potyviridae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.