The peroxisome biogenesis disorders (PBDs) are a group of neuronal migration/neurodegenerative disorders that arise from defects in PEX genes. A major subgroup of the PBDs includes Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). These three disorders represent a clinical continuum with Zellweger syndrome the most severe. Mutations in the PEX1 gene, which encodes a protein of the AAA ATPase family involved in peroxisome matrix protein import, account for the genetic defect in more than half of the patients in this PBD subgroup. We report here on the results of PEX1 mutation detection in an Australasian cohort of PEX1-deficient PBD patients. This screen has identified five novel mutations, including nonsense mutations in exons 14 and 19 and single nucleotide deletions in exons 5 and 18. Significantly, the allele carrying the exon 18 frameshift mutation is present at moderately high frequency (approx. 10%) in this patient cohort. The fifth mutation is a missense mutation (R798G) that attenuates, but does not abolish PEX1 function. We have evaluated the cellular impact of these novel mutations, along with that of the two most common PEX1 mutations (c.2097-2098insT and G843D), in PBD patients by determining the levels of PEX1 mRNA, PEX1 protein, and peroxisome protein import. The findings are consistent with a close correlation between cellular phenotype, disease severity, and PEX1 genotype.
Prenatal diagnosis was requested for a couple with a previous child affected by the peroxisomal disorder D-bifunctional protein deficiency. Prior analysis of the D-bifunctional protein cDNA sequence from the propositus had shown that it was missing 22 bp. This was subsequently attributed to a point mutation in the intron 5 donor site (IVS5 + 1G>C) of the D-bifunctional protein gene. Consistent with parental consanguinity, the patient was shown to be homozygous for this mutation, which is associated with loss of a Hph 1 restriction site in the genomic sequence. Prenatal testing of the fetus using genomic DNA isolated from uncultured amniocytes indicated that both alleles of the D-bifunctional protein had the IVS5 + 1G>C substitution. The peroxisomal defect was later confirmed biochemically using cultured amniocytes, which were found to have elevated levels of very long chain fatty acids (VLCFA). This is the first report of prenatal diagnosis of D-bifunctional protein deficiency using molecular analysis of genomic DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.