Abstract-In this paper, we present the current state of the art in semantic data modeling of multimedia data. Semantic conceptualization can be performed at several levels of information granularity, leading to multilevel indexing and searching mechanisms. Various models at different levels of granularity are compared. At the finest level of granularity, multimedia data can be indexed based on image contents, such as identification of objects and faces. At a coarser level of granularity, indexing of multimedia data can be focused on events and episodes, which are higher level abstractions. In light of the above, we also examine modeling and indexing techniques of multimedia documents.
Abstract-In the past few years considerable demand for user oriented multimedia information systems has developed. These systems must provide a rich set of functionality so that new, complex, and interesting applications can be addressed. This places considerable importance on the management of diverse data types including text, images, audio and video. These requirements generate the need for a new generation of distributed heterogeneous multimedia database systems. In this paper we identify a set of functional requirements for a multimedia server considering database management, object synchronization and integration, and multimedia query processing. A generalization of the requirements to a distributed system is presented, and some of our current research and developing activities are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.