We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.
The characteristics of intermediate band solar cells containing 10, 20, and 50 InAs quantum dot (QD) layers embedded in otherwise “standard” (Al,Ga)As solar cell structures have been compared. The short-circuit current densities of the cells decreased and the quantum efficiencies of the devices showed a concomitant reduction in the minority carrier lifetime in the p emitters with increasing number of QD layers. Dislocations threading up from the QDs toward the surface of the cells, and revealed by bright field scanning transmission electron microscopy, are the most likely cause of the deterioration in the electrical performance of the cells.
The relationship of leptin gene expression to adipocyte volume was investigated in lean 10-wk-old male C57BL/6J mice. mRNA levels for leptin, insulin receptor, glucocorticoid receptor, and tumor necrosis factor (TNF)-α in inguinal, epididymal, and retroperitoneal adipose tissues were quantified and related to adipocyte volume. Leptin mRNA levels were highly correlated with adipocyte volume within each fat depot. Multiple regression analysis of pooled data from the three depots showed that leptin mRNA levels were strongly correlated with adipocyte volumes (β = 0.84, P < 0.001) and, to a smaller degree, with glucocorticoid receptor mRNA levels (β = 0.36, P < 0.001). Depot of origin had no effect ( P > 0.9). Rates of leptin secretion in vitro were strongly correlated with leptin mRNA levels ( r = 0.89, P < 0.001). mRNA levels for TNF-α, insulin receptor, and glucocorticoid receptor showed no significant correlation with adipocyte volume. These results demonstrate that depot-specific differences in leptin gene expression are mainly related to the volumes of the constituent adipocytes. The strong correlation between leptin gene expression and adipocyte volume supports leptin's physiological role as a humoral signal of fat mass.
Articles you may be interested inOptimization of growth conditions of type-II Zn(Cd)Te/ZnCdSe submonolayer quantum dot superlattices for intermediate band solar cells J. Vac. Sci. Technol. B 31, 03C119 (2013); 10.1116/1.4797486 Effects of quantum dot layers on the behavior of multijunction solar cell operation under concentration AIP Conf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.