Determination of the mechanisms underlying the growth of tungsten fuzz is an important step towards mitigation of fuzz formation. Nanostructured tungsten was produced on resistively heated tungsten wires in a helicon plasma source (maximum flux of 2.5 × 10 21 m −2 s −1). Asymmetry in the setup allows for investigation of temperature and flux effects in a single sample. An effort at elucidating the mechanism of formation was made by inspecting SEM micrographs of the nanostructured tungsten at successive fluence steps of helium ions up to a fluence of 1 × 10 27 m −2. To create these micrographs a single tungsten sample was exposed to the plasma, removed and inspected with an SEM, and replaced into the plasma. The tungsten surface was marked in several locations so that each micrograph is centred within 200 nm of each previous micrograph. Pitting of the surface (diameter 9.5 ± 2.3 nm, fluence (5 ± 2)×10 25 m −2) followed by surface roughening (fluence (9 ± 2) × 10 25 m −2) and tendril formation (diameter 30 ± 10 nm, fluence (2 ± 1) × 10 26 m −2) is observed, providing evidence of bubble bursting as the mechanism for seeding the growth of the tungsten fuzz.
An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh–Taylor-like and Kelvin–Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana–Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.
Performance of the lithium metal infused trenches in the magnum PSI linear plasma simulator View the table of contents for this issue, or go to the journal homepage for more 2015 Nucl. Fusion 55 113004
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.