In this study, the performance of a polyaniline (PANI) based supercapacitor where electroactive PANI films were prepared on carbon paper electrodes from a nonaqueous solution with an organic acid (CF 3 COOH) as the proton source was investigated. The use of nonaqueous media as electrolyte led to an increase of the electroactivity window from 0.75 V in aqueous media up to 1.0 V. Low frequency capacitance, evaluated by electrochemical impedance spectroscopy, of about 150 F/g is reported. Scanning electron microscopy indicated a highly porous material for deposited charges greater than 1 C/cm 2 . Constant current charge/discharge cycling of a symmetric supercapacitor based on PANI in nonaqueous medium was performed in a two-electrode cell configuration and a loss of about 60% of the discharge capacity was demonstrated after 1000 cycles. Tetramethylammonium methanesulfonate (Me 4 NCF 3 SO 3 ) was also used instead of tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) as supporting electrolyte in acetonitrile for the charge/discharge testing of the PANI-PANI capacitor. Energy and power densities of approximately 3.5 Wh/kg and 1300 W/kg, respectively, were developed by this supercapacitor for a cell voltage of 1 V and a discharge time of 20 s. On the other hand, an asymmetrical supercapacitor with polypyrrole and polyaniline used as positive and negative electrodes, respectively, displayed slightly improved performance. Indeed, an energy density of 5 Wh/kg and a power density of 1200 W/kg were reported for discharge time of about 20 s with 1 M Me 4 NCF 3 SO 3 /acetonitrile as electrolyte.
HPL SA report the modification of the electrochemical performance of lithium manganese phosphate
(LiMnPO4)
via Mn-site bivalent substitution. Manganese (10%) is substituted with iron, nickel, magnesium, or zinc. These substituents are shown via an X-ray to form solid solutions. The choice of substituent is demonstrated to have a strong influence on the electrochemical performance. The optimum performance improvement was achieved when 10% of Fe is substituted. This is ascribed to a smaller crystallite and a higher electronic conductivity observed in this material: Presumably Fe plays a role in hindering the crystallite growth and in increasing the carrier’s transportation. Electronic structures were calculated by density function theory to understand the different influences of substitute cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.