The determination of the safe working life of polymer materials is important for their successful use in engineering, medicine and consumer-goods applications. An understanding of the physical and chemical changes to the structure of widely-used polymers such as the polyolefins, when exposed to aggressive environments, has provided a framework for controlling their ultimate service lifetime by either stabilizing the polymer or chemically accelerating the degradation reactions. The recent focus on biodegradable polymers as replacements for more bio-inert materials such as the polyolefins in areas as diverse as packaging and as scaffolds for tissue engineering has highlighted the need for a review of the approaches to being able to predict the lifetime of these materials. In many studies the focus has not been on the embrittlement and fracture of the material (as it would be for a polyolefin) but rather the products of degradation, their toxicity and ultimate fate when in the environment, which may be the human body. These differences are primarily due to time-scale. Different approaches to the problem have arisen in biomedicine, such as the kinetic control of drug delivery by the bio-erosion of polymers, but the similarities in mechanism provide real prospects for the prediction of the safe service lifetime of a biodegradable polymer as a structural material. Common mechanistic themes that emerge include the diffusion-controlled process of water sorption and conditions for surface versus bulk degradation, the role of hydrolysis versus oxidative degradation in controlling the rate of polymer chain scission and strength loss and the specificity of enzyme-mediated reactions.
An improved method to analyze the (13)C NMR spectra of native starches, which considers the contribution of the V-type conformation and the nature of the amorphous component, has been developed. Starch spectra are separated into amorphous and ordered subspectra, using intensity at 84 ppm as a reference point. The ordered subspectra of high amylose starches show the presence of both V-type single helices and B-type double helices. Relative proportions of amorphous, single, and double-helical conformations are estimated by apportioning intensity of C1 peak areas between conformational types on the basis of ordered and amorphous subspectra of the native starch. Quantitative analysis shows that the V-type single-helical component increases with amylose content of starches. Different amorphous subspectra are needed to provide a consistent analysis of granular starches from diverse sources. The method of preparation was found to be more important than the starch botanical origin in determining (13)C NMR spectral features of amorphous samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.