Available online xxx Keywords: Biopolymer Polyhydroxyalkanoates Microbial polyesters Poly((R)-3-hydroxybutyrate) Poly((R)-3-hydroxybutyrate-co-3hydroxyvalerate) Mechanical properties a b s t r a c tMicrobially produced polyhydroxyalkanoates (PHAs) are fully biodegradable biopolyesters that have attracted much attention recently as alternative polymeric materials that can be produced from biorenewable and biowaste resources. The properties of these biological polymers are affected by the same fundamental principles as those of fossil-fuel derived polyolefins, with a broad range of compositions available based on the incorporation of different monomers into the PHA polymer structure, and with this broad range tailoring subsequent properties. This review comprehensively covers current understanding with respect to PHA biosynthesis and crystallinity, and the effect of composition, microstructure and supramacromolecular structures on chemomechanical properties. While polymer composition and microstructure are shown to affect these properties, the review also finds that a key driver for determining polymer performance properties is compositional distribution. From this review it follows that PHA-PHA blend compositions are industrially important, and the performance properties of such blends are discussed. A particular need is identified for further research into the effect of chemical compositional distribution on macromolecular structure and end-use properties, advanced modeling of the PHA accumulation process and chain growth kinetics for better process control.
Phosphorus removal in waste stabilization ponds (WSP) is highly variable, but the reasons for this are not well understood. Luxury uptake of phosphorus by microalgae has been studied in natural systems such as lakes but not under the conditions found in WSP. This work reports on the effects of phosphate concentration, light intensity, and temperature on luxury uptake of phosphorus by WSP microalgae in continuous culture bioreactors. Increasing temperature had a statistically significant "positive effect" on intracellular acid-insoluble polyphosphate concentration. It is likely that elevated temperature increased the rate of polyphosphate accumulation, but because the biomass was not starved of phosphate, the stored acid-insoluble polyphosphate was not utilized. Increasing light intensity had no effect on acid-insoluble polyphosphate but had a "negative effect" on the acid-soluble polyphosphate. A possible explanation for this is that the faster growth rate at high light intensity results in this form of polyphosphate being utilized by the cells for synthesis of cellular constituents at a rate that exceeds replenishment. The variability in the phosphorus content of the microalgal biomass shows that with this new understanding ofthe luxury uptake mechanism there is the potential to optimize WSP for biological phosphorus removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.