Escherichia coli HB101 harboring an expression plasmid that bears the calf prochymosin gene controlled by the tac promoter was cultivated under different conditions in order to find an optimal fermentation arrangement that would lead to maximal prochymosin yield. Our results indicate that it is advantageous to use lactose in the double role of inducer and carbon/energy source when foreign gene expression is controlled by the tac promoter and the gene product is only moderately toxic owing to its accumulation in the form of an intracellular body. Glucose, on the other hand, may be used when expression should be repressed. Growth temperature substantially influenced the specific rate of prochymosin and beta-lactamase gene expression and the plasmid copy number. Three phases were distinguished in the time course of the fermentation on lactose: exponential growth practically without prochymosin synthesis, linear growth with prochymosin synthesis, and prochymosin synthesis without growth of biomass. The synthesis of prochymosin in the form of intracellular inclusion body was accompanied by the loss of respiratory activity of the cell and the loss of its ability to multiply. Sixteen hours cultivation at 37 degrees C in a complex medium with lactose as inducer and carbon/energy source resulted in up to 30% of the volume and 48% of the total protein of biomass being accumulated for as prochymosin inclusion bodies. The concentration of extractable enzymatically active chymosin in the culture reached 12 mg/L.
An E. cali plasmid expressing efficiently an artificial precursor of bovine leukemia virus (BLV) proteinase under transcriptional control of the phage T7 promoter was constructed. The expression product accumulates in the induced E. coii cells in the form of insoluble cytoplasmic inclusions. Solubilization of the inclusions and a refolding step yield almost pure and completely self-processed proteinase. Purification to homogeneity was achieved by ion-exchange chromatography and reverse-phase HPLC. On a preparative scale, a high yield of enzymatically active proteinase wasobtained. An initial study using a series of synthetic peptide substrates shows a distinct substrate specificity of BLV proteinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.