In this paper, we present the results of liquid low-level radioactive wastes (LLLRW) treatment by direct contact membrane distillation (DCMD) using polyethylene terephthalate (PET) track-etched membranes (TeMs). PET TeMs were modified by styrene and triethoxyvinylsilane (TEVS) using UV-induced grafting. Modification led to increase in the contact angle to 99°of PET TeMs (pore size from 150 to 300 nm). Hydrophobic PET TeMs were investigated by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), goniometric analysis, gas permeability test, liquid entry presser (LEP) analysis and scanning electron microscope (SEM). Prepared membranes were tested in treatment of LLLRW by DCMD. The influence of pore size on water flux and rejection degree was studied. Rejection degree was evaluated by conductometry and atomic emission methods. Decontamination factors (evaluated by gamma-ray spectroscopy) for 60 Co, 137 Cs, and 241 Am were found to be 85, 1900 and 5 respectively. In most cases degree of rejection of Cs, Mo, Sr, Sb, Al, Ca, Fe, K, Mg and Na ions were more than 90% and close to 100%. The use of TeMs with a narrow pores size distribution and without tortuous channels allowed us to achieve better purification from radioactive wastes in comparison with hollow-fiber membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.