A retrospective study was undertaken to record the occurrence and pattern of long bone fractures, and the efficacy of Intramedullary (IM) Steinmann pin fixing in growing dogs. All the records of growing dogs during a 10-year-period were screened to record the cause of trauma, the age and sex of the animal, the bone involved, the type and location of the fracture, the status of fixation, alignment, maintenance of fixation and fracture healing. The results were analysed and comparisons were made between growing dogs with normal and osteopenic bones. Among the 310 cases of fractures recorded, the bones were osteopenic in 91 cases (29%). Minor trauma was the principal cause of fracture in dogs with osteopenia (25%), and indigenous breeds were most commonly affected (38%). Fractures in dogs with osteopenic bones were most commonly recorded in the age group of 2-4 months (53%), whereas fractures in normal dogs were almost equally distributed between 2 and 8 months of age. Male dogs were affected significantly more often in both groups. In osteopenic bones, most fractures were recorded in the femur (56%), and they were distributed equally along the length of the bone. Whereas in normal bones, fractures were almost equally distributed in radius/ulna, femur and tibia, and were more often recorded at the middle and distal third of long bones. Oblique fractures were most common in both groups; however, comminuted fractures were more frequent in normal bones, whereas incomplete fractures were more common in osteopenic bones. Ninety-nine fracture cases treated with IM pinning (66 normal, 33 osteopenic) were evaluated for the status of fracture reduction and healing. In a majority of the cases (61%) with osteopenic bones, the diameter of the pin was relatively smaller than the diameter of the medullary cavity (<70-75%), whereas in 68% of the cases in normal bones the pin diameter was optimum. The status of fracture fixing was satisfactory to good in significantly more osteonormal (59%) than osteopenic dogs (42%). Fracture healing, however, was satisfactory in significantly more cases with osteopenic than normal bones. The appearance of callus was relatively early and the amount of bridging callus was relatively large in greater number of osteopenic bone fractures. Mal-union and non-union were recorded more often in osteopenic cases than in normal cases. However, the incidence of bone shortening and osteomyelitis was significantly higher in normal bones than in osteopenic bones.
The aim of the study was to evaluate the potential of autologous bone marrow-derived nucleated cells to enhance the rate of healing of full-thickness excisional skin wounds in rabbits. The study was conducted on 20 New Zealand white rabbits of either sex. Two, 2 x 2 cm full-thickness skin (thoracolumabar region) excisional wounds were created; one on each side of the dorsal midline in each animal. The wounds were randomly assigned to either injection of autologous bone marrow-derived nucleated cells into the wound margins (BI), or topical application of sterile saline solution (normal saline, NS), which served as control. The wound healing was assessed by evaluation of granulation tissue formation, wound contraction, epithelisation and histopathological and histochemical changes up to 28 days after creation of the wound. Granulation tissue appeared significantly faster in BI-treated wounds (3.22 +/- 0.22 days) than in NS-treated wounds (4.56 +/- 0.47 days). Better epithelisation was seen histologically in BI wounds than in NS-treated wounds. Wound contraction was significantly more in BI wounds when compared with NS wounds on 21 post-surgery. Histopathological examination of the healing tissue showed early disappearance of inflammatory reaction, significantly more neovascularisation, and more fibroplasias and early lay down and histological maturation of collagen in BI wounds than in control wounds. It was concluded that injection of autologous bone marrow-derived nucleated cells in the wound margins induced faster and better quality healing of excisional skin wounds in rabbits when compared with normal saline. The injection of autologous bone marrow-derived nucleated cells can be used to promote healing of large full-thickness skin wounds in rabbits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.