Cytotoxic T lymphocytes (CTL) generated in C57BL/6 (H-2b) mice in response to infection with the serologically distinct herpes simplex virus type 1 (HSV-t) or type 2 (HSV-2) were cross-reactive against target cells infected with either serotype. However, HSV-2-infected cells were shown to be much less susceptible to CTL-mediated lysis, and analysis through the use of HSV-1 x HSV-2 intertypic recombinants mapped the reduced susceptibility to a region contained within 0.82 to 1.00 map units of the HSV-2 genome. The study reported here was undertaken to determine the possible reasons for the reduced susceptibility of HSV-2infected cells to lysis by CTL. Competition for the specific lysis of labeled HSV-1-infected cells by either HSV-1or HSV-2-infected, unlabeled inhibitor cells and frequency analysis of the CTL precursor able to recognize HSV-1and HSV-2-infected cells suggested that the reduced susceptibility of HSV-2-infected cells to lysis could be explained, at least in part, by reduced levels of target cell recognition. A determination of the surface expression of the critical elements involved in target cell recognition by CTL following infection with HSV-1 or HSV-2 revealed that all the major HSV-specific glycoprotein species were expressed. Infection with both HSV-1 and HSV-2 caused a reduction in the expression of the class I H-2 antigens. However, this reduction was much greater following infection with HSV-2. This suggested that one important factor contributing to reduced lysis of HSV-2-infected cells may be the altered or reduced expression of the class I H-2 self-antigens.
Cytotoxic T lymphocytes (CTL) were generated in C57BL/6 mice with herpes simplex virus type 1 (HSV-1) (strains KOS, 17, HFEM, and mP) and HSV-2 (strains 186, G, and GP6). Effector lymphocytes were tested for cytotoxicity against syngeneic HSV-1-and HSV-2-infected cells in a 5-h 51Cr release assay. HSV-1 strain HFEM was found to induce CTL efficiently only when 100-fold more virus was used as compared with HSV-1 strains KOS, 17, and mP. All HSV-1 and HSV-2 strains induced cross-reactive populations of CTL. CTL generated by HSV-1 KOS and HSV-2 186 also demonstrated cross-reactivity in an earswelling model for delayed-type hypersensitivity. Lymphocytes generated by all HSV-2 strains were highly efficient at lysing HSV-1-infected target cells. However, HSV-2-infected target cells were found to be less susceptible to lysis by either HSV-1 or HSV-2 CTL than were HSV-1-infected target cells. The lowered susceptibility of HSV-2-infected cells was not due to an inefficient infection of BL/ 6 WT-3 cells as measured by standard growth assays and infectious center assays. Varying the multiplicity of infection or the time of infection did not increase the susceptibility of HSV-2-infected target cells to lysis by CTL. Increasing the effector-to-target-cell ratio resulted in an increased lysis of both HSV-1and HSV-2-infected target cells by CTL, but the level of HSV-2-infected target cell lysis still did not approach the level of HSV-1-infected target cell lysis. HSV-2-infected cells were as efficient as HSV-1-infected cells in the cold cell competition assay employed in reducing the lysis of 51Cr-labeled, HSV-1-infected target cells. In addition, HSV-2-infected cells were susceptible to lysis by HSV-immune serum and complement.
The objective of this study was to identify and test a convenient means for long-term storage of lymphocytes taken from clinically characterized patients without losing B- or T-cell function. Accordingly, peripheral blood lymphocytes were frozen and stored, and portions of each sample were subsequently assayed for T-cell blastogenic response and B-cell Jerne plaquing at various time intervals after freezing. A comparison of the cell counts of fresh and frozen cultures indicated that cell were recovered after freezing. Furthermore, these cells showed no significant differences in (i) cell viability; (ii) blastogenic response to antigens of Actinomyces maeslandii, Bacteroides melaninogenicus, Fusobacterium nucleatum, and tetanus toxoid; (iii) blastogenic response to phytohemagglutinin and pokeweed mitogen; and (iv) polyclonal B-cell response to pokeweed mitogen as measured by the direct Jerne plaque assay. The retained blastogenic and plaquing responses seen in frozen cultures indicated the maintenance of both T-cell and B-cell function, respectively. This is the first reported demonstration of Jerne plaquing of normal human lymphocytes after freezing. It appears that freezing techniques provide a means for repeating and extending both T- and B-cell assays using frozen stored portions of the same cell samples.
A function(s) involved in the altered susceptibility of herpes simplex virus type 2 (HSV-2)-infected cells to specific lysis by cytotoxic T lymphocytes was mapped in the S component of HSV-2 DNA by using HSV-1 x HSV-2 intertypic recombinants (RH1G44, RS1G25, RSOBG10, A7D, and C4D) and HSV-1 MP. Target cells infected with RSOBG10, A7D, and C4D exhibited reduced levels of cytolysis, as did HSV-2-infected cells, whereas RH1G44 and RS1G25 recombinant-infected and HSV-1 MP-infected cells showed levels of lysis equal to that of HSV-1 KOS-infected cells. The intertypic recombinants R50BG10, RS1G25, RH1G44,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.