Cytotoxic T lymphocytes (CTL) were generated in C57BL/6 mice with herpes simplex virus type 1 (HSV-1) (strains KOS, 17, HFEM, and mP) and HSV-2 (strains 186, G, and GP6). Effector lymphocytes were tested for cytotoxicity against syngeneic HSV-1-and HSV-2-infected cells in a 5-h 51Cr release assay. HSV-1 strain HFEM was found to induce CTL efficiently only when 100-fold more virus was used as compared with HSV-1 strains KOS, 17, and mP. All HSV-1 and HSV-2 strains induced cross-reactive populations of CTL. CTL generated by HSV-1 KOS and HSV-2 186 also demonstrated cross-reactivity in an earswelling model for delayed-type hypersensitivity. Lymphocytes generated by all HSV-2 strains were highly efficient at lysing HSV-1-infected target cells. However, HSV-2-infected target cells were found to be less susceptible to lysis by either HSV-1 or HSV-2 CTL than were HSV-1-infected target cells. The lowered susceptibility of HSV-2-infected cells was not due to an inefficient infection of BL/ 6 WT-3 cells as measured by standard growth assays and infectious center assays. Varying the multiplicity of infection or the time of infection did not increase the susceptibility of HSV-2-infected target cells to lysis by CTL. Increasing the effector-to-target-cell ratio resulted in an increased lysis of both HSV-1and HSV-2-infected target cells by CTL, but the level of HSV-2-infected target cell lysis still did not approach the level of HSV-1-infected target cell lysis. HSV-2-infected cells were as efficient as HSV-1-infected cells in the cold cell competition assay employed in reducing the lysis of 51Cr-labeled, HSV-1-infected target cells. In addition, HSV-2-infected cells were susceptible to lysis by HSV-immune serum and complement.
A function(s) involved in the altered susceptibility of herpes simplex virus type 2 (HSV-2)-infected cells to specific lysis by cytotoxic T lymphocytes was mapped in the S component of HSV-2 DNA by using HSV-1 x HSV-2 intertypic recombinants (RH1G44, RS1G25, RSOBG10, A7D, and C4D) and HSV-1 MP. Target cells infected with RSOBG10, A7D, and C4D exhibited reduced levels of cytolysis, as did HSV-2-infected cells, whereas RH1G44 and RS1G25 recombinant-infected and HSV-1 MP-infected cells showed levels of lysis equal to that of HSV-1 KOS-infected cells. The intertypic recombinants R50BG10, RS1G25, RH1G44,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.