Neuromorphic computing (NC), which emulates neural activities of the human brain, is considered for the low-power implementation of artificial intelligence. Toward realizing NC, fabrication, and investigations of hardware elementssuch as synaptic devices and neuronsare crucial. Electrolyte gating has been widely used for conductance modulation by massive carrier injections and has proven to be an effective way of emulating biological synapses. Synaptic devices, in the form of synaptic transistors, have been studied using various materials. Despite the remarkable progress, the study of metallic channel-based synaptic transistors remains massively unexplored. Here, we demonstrated a three-terminal electrolyte gatingmodulated synaptic transistor based on a metallic cobalt thin film to emulate biological synapses. We have realized gating-controlled, non-volatile, and distinct multilevel conductance states in the proposed device. The essential synaptic functions demonstrating both short-term and long-term plasticity have been emulated in the synaptic device. A transition from short-term to long-term memory has been realized by tuning the gate pulse parameters, such as amplitude and duration. The crucial cognitive behavior, including learning, forgetting, and re-learning, has been emulated, showing a resemblance to the human brain. Beyond that, dynamic filtering behavior has been experimentally implemented in the synaptic device. These results provide an insight into the design of metallic channel-based synaptic transistors for NC.
Tuning the properties of magnetic materials by voltage-driven ion migration (magneto-ionics) gives potential for energy-efficient, non-volatile magnetic memory and neuromorphic computing. Here, we report large changes in the magnetic moment at saturation (mS) and coercivity (HC), of 34% and 78%, respectively, in an array of CoFe2O4 (CFO) epitaxial nanopillar electrodes (∼50 nm diameter, ∼70 nm pitch, and 90 nm in height) with an applied voltage of −10 V in a liquid electrolyte cell. Furthermore, a magneto-ionic response faster than 3 s and endurance >2000 cycles are demonstrated. The response time is faster than for other magneto-ionic films of similar thickness, and cyclability is around two orders of magnitude higher than for other oxygen magneto-ionic systems. Using a range of characterization techniques, magnetic switching is shown to arise from the modulation of oxygen content in the CFO. Also, the highly cyclable, self-assembled nanopillar structures were demonstrated to emulate various synaptic behaviors, exhibiting non-volatile, multilevel magnetic states for analog computing and high-density storage. Overall, CFO nanopillar arrays offer the potential to be used as interconnected synapses for advanced neuromorphic computing applications.
Neuromorphic computing (NC) is a crucial step toward realizing power-efficient artificial intelligence systems. Hardware implementation of NC is expected to overcome the challenges associated with the conventional von Neumann computer architecture. Synaptic devices that can emulate the rich functionalities of biological synapses are emerging. Out of several approaches, electrolyte-gated synaptic transistors have attracted enormous scientific interest owing to their similar working mechanism. Here, we report a three-terminal electrolyte-gated synaptic transistor based on Fe3O4 thin films, a half-metallic spinel ferrite. We have realized gate-controllable multilevel, non-volatile, and rewritable states for analog computing. Furthermore, we have emulated essential synaptic functions by applying electrical stimulus to the gate terminal of the synaptic device. This work provides a new candidate and a platform for spinel ferrite-based devices for future NC applications.
Artificial synaptic devices capable of synchronized storing and processing of information are the critical building blocks of neuromorphic computing systems for the low-power implementation of artificial intelligence. Compared to the diverse synaptic device structures, the emerging electrolyte-gated synaptic transistors are promising for mimicking biological synapses owing to their analogous working mode. Despite the remarkable progress in electrolyte-gated synaptic transistors, the study of metallic channel-based synaptic devices remains vastly unexplored. Here, we report a three-terminal electrolyte-gated artificial synapse based on metallic permalloy as the active layer. Gating controlled, non-volatile, rewritable, and distinct multilevel conductance states have been achieved for analog computing. Representative synaptic behaviors such as excitatory postsynaptic conductance (EPSC), paired-pulse facilitation (PPF), spike amplitude-dependent plasticity (SADP), spike duration-dependent plasticity (SDDP), and long-term potentiation/depression (LTP/D) have been successfully simulated in the synaptic device. Furthermore, switching from short-term to long-term memory regimes has been demonstrated through repeated training. Benefitting from the short-term facilitation, the synaptic device can also act as a high-pass temporal filter for selective communication. This research highlights the great potential of metallic channel-based synaptic devices for future neuromorphic systems and augments the diversity of synaptic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.