The detailed mass transfer distributions around the sharp 180 deg turns in a two-pass, square, smooth channel and in an identical channel with two rib-roughened opposite walls were determined via the napthalene sublimation technique. The top, bottom, inner (divider), and outer walls of the test channel were napthalene-coated surfaces. For the ribbed channel tests, square, transverse, brass ribs were attached to the top and bottom walls of the channel in alignment. The rib height-to-hydraulic diameter ratios (e/D) were 0.063 and 0.094; the rib pitch-to-height ratios (P/e) were 10 and 20. Experiments were conducted for three Reynolds numbers of 15,000, 30,000, and 60,000. Results show that the Sherwood numbers on the top, outer, and inner walls around the turn in the rib-roughened channel are higher than the corresponding Sherwood numbers around the turn in the smooth channel. For both the smooth and the ribbed channels, the Sherwood numbers after the sharp turn are higher than those before the turn. The regional averages of the local Sherwood numbers are correlated and compared with published heat transfer data.
The heat transfer characteristics of turbulent air flow in a two-pass channel were studied via the naphthalene sublimation technique. The test section, which consisted of two straight, square channels joined by a sharp 180 deg turn, resembled the internal cooling passages of gas turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The rib height-to-hydraulic diameter ratio (e/D) was 0.063 and the rib pitch-to-height ratio (P/e) was 10. The local heat/mass transfer coefficients on the roughened top wall, and on the smooth divider and side walls of the test channel, were determined for three Reynolds numbers of 15,000, 30,000, and 60,000, and for three angles of attack (α) of 90, 60, and 45 deg. The results showed that the local Sherwood numbers on the ribbed walls were 1.5 to 6.5 times those for a fully developed flow in a smooth square duct. The average ribbed-wall Sherwood numbers were 2.5 to 3.5 times higher than the fully developed values, depending on the rib angle-of-attack and the Reynolds number. The results also indicated that, before the turn, the heat/mass transfer coefficients in the cases of α = 60 and 45 deg were higher than those in the case of α = 90 deg. However, after the turn, the heat/mass transfer coefficients in the oblique-rib cases were lower than those in the traverse-rib case. Correlations for the average Sherwood number ratios for individual channel surfaces and for the overall Sherwood number ratios are reported.
An experimental study of wall heat transfer and friction characteristics of a fully developed turbulent air flow in a rectangular channel with transverse ribs on one, two, and four walls is reported. Tests were performed for Reynolds numbers ranging from 10,000 to 80,000. The pitch-to-rib height ratio, P/e, was kept at 8 and rib height-to-channel hydraulic diameter ratio, e/D h , was kept at 0.0625. The channel length-to-hydraulic diameter ratio, L/D h , was 15. The heat transfer coefficient and friction factor values were enhanced with the increase in the number of ribbed walls. The friction roughness function, R(e + ), was almost constant over the entire range of tests performed and was within comparable limits of the previously published data. The heat transfer roughness function, G(e + ), decreased with additional ribbed walls and compared well with previous work in this area. Friction data obtained experimentally for the case with four ribbed walls compared well with the values predicted by the assumed theoretical relationship used in the present study and past publications. Results of this investigation could be used in various applications of internal channel turbulent flows involving different numbers of roughened walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.