Brazil ranked second only to the United States in hectares planted to genetically modified crops in 2013. Recently corn producers in the Cerrado region reported that the control of Spodoptera frugiperda with Bt corn expressing Cry1Fa has decreased, forcing them to use chemicals to reduce the damage caused by this insect pest. A colony of S. frugiperda was established from individuals collected in 2013 from Cry1Fa corn plants (SfBt) in Brazil and shown to have at least more than ten-fold higher resistance levels compared with a susceptible colony (Sflab). Laboratory assays on corn leaves showed that in contrast to SfLab population, the SfBt larvae were able to survive by feeding on Cry1Fa corn leaves. The SfBt population was maintained without selection for eight generations and shown to maintain high levels of resistance to Cry1Fa toxin. SfBt showed higher cross-resistance to Cry1Aa than to Cry1Ab or Cry1Ac toxins. As previously reported, Cry1A toxins competed the binding of Cry1Fa to brush border membrane vesicles (BBMV) from SfLab insects, explaining cross-resistance to Cry1A toxins. In contrast Cry2A toxins did not compete Cry1Fa binding to SfLab-BBMV and no cross-resistance to Cry2A was observed, although Cry2A toxins show low toxicity to S. frugiperda. Bioassays with Cry1AbMod and Cry1AcMod show that they are highly active against both the SfLab and the SfBt populations. The bioassay data reported here show that insects collected from Cry1Fa corn in the Cerrado region were resistant to Cry1Fa suggesting that resistance contributed to field failures of Cry1Fa corn to control S. frugiperda.
Bacillus thuringiensis strains isolated from Latin American soil samples that showed toxicity against three Spodoptera frugiperda populations from different geographical areas (Mexico, Colombia, and Brazil) were characterized on the basis of their insecticidal activity, crystal morphology, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of parasporal crystals, plasmid profiles, and cry gene content. We found that the different S. frugiperda populations display different susceptibilities to the selected B. thuringiensis strains and also to pure preparations of Cry1B, Cry1C, and Cry1D toxins. Binding assays performed with pure toxin demonstrated that the differences in the toxin binding capacities of these insect populations correlated with the observed differences in susceptibility to the three Cry toxins analyzed. Finally, the genetic variability of the three insect populations was analyzed by random amplification of polymorphic DNA-PCR, which showed significant genetic diversity among the three S. frugiperda populations analyzed. The data presented here show that the genetic variability of S. frugiperda populations should be carefully considered in the development of insect pest control strategies, including the deployment of genetically modified maize in different geographical regions.Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a worldwide pest of economic importance for different crops. This species has a highly polyphagous feeding behavior, which includes the consumption of different cultivated plants, such as maize (Zea mays L.), cotton (Gossypium hirsutum L.), and rice (Oryza sativa L.). To date, the most common method for controlling this pest relies on the use of synthetic insecticides such as methomyl, carbaryl, and cypermethrin (10), in spite of the damage they cause to the environment and to nontarget organisms. Two distinct strains of S. frugiperda, one associated with maize and the other with rice, have been already identified in the United States (17, 19). The detection and characterization of genetic diversity among insect populations is a critical issue for the improvement of pest management strategies, since the evolution of resistance to insecticides among insect populations is dependent on the frequency of resistant alleles, the inheritance of resistance, the relative fitness cost, and the gene flow.Bioinsecticides are viable alternatives for insect control in agriculture, and among them, Bacillus thuringiensis is the most widely used. B. thuringiensis is compatible with sustainable and environmentally friendly agricultural practices. This bacterium produces insecticidal proteins (Cry protoxins) during sporulation as parasporal crystals, which are highly specific to their target insects; safe for humans, other vertebrates, and plants; and biodegradable (12). Moreover, recombinant DNA technology using cry genes has developed insect-resistant transgenic plants that are used extensively for cotton, corn, and rice production, among others (23).Information regarding the suscept...
-Aedes aegypti (L.) is an important vector of diseases such as the yellow fever and dengue, present in tropical and subtropical regions. The objective of this study was to analyze the genetic variability of different A. aegypti populations using RAPD (Random Amplified Polymorphic DNA) markers as a basic study to support the use of biocontrol strategies. DNA of ten collected larvae from three different populations were analyzed using ten RAPD primers. The results indicated the existence of genetic variability inter and intrapopulation. This was confirmed by a dendrogram that grouped the populations in two main clusters with a genetic similarity of 24%. In one of these clusters, it was possible to distinguish two populations that showed 50% similarity. The molecular variance analysis indicated that the interpopulation genetic diversity (55,01%) was higher than the intrapopulation genetic diversity (44,99%). A high genetic polymorphism (H t = 0.2656) and high levels of genetic differentiation between populations (G st = 0.3689) were found. The adopted DNA extraction protocol proved to be efficient regardless the insect development stage used, avoiding the addition of reagents or additional stages of processing. Future experiments can be performed to confirm if the detected variability is related to the resistance characteristics of each population to a determined pesticide.KEY WORDS: Dengue vector, population genetic, resistance RESUMO -Aedes aegypti (L.) é vetor de importantes doenças como a febre amarela e a dengue, presentes em regiões tropicais e subtropicais. Para o sucesso no seu controle biológico é importante conhecer a estrutura genética e os mecanismos que resultaram na diversidade das populações. O objetivo deste estudo foi analisar a variabilidade genética de diferentes populações de A. aegypti utilizando marcadores de RAPD (Polimorfismo de DNA amplificado ao acaso). DNA de dez larvas coletadas a partir de três populações de diferentes localidades foi analisado usando dez iniciadores de RAPD. Os resultados indicaram a existência de variabilidade genética inter e intrapopulacional. Isso foi confirmado por um dendrograma que agrupou as populações em dois blocos principais com similaridade genética de 24%. Em um desses agrupamentos foi possível distinguir duas populações que apresentaram grau de similaridade de 50%. A diversidade genética entre as populações (55,01%) foi mais elevada que a diversidade genética dentro das populações (44,99%) aplicando-se análise por AMOVA. Altos níveis de polimorfismo genético (H t = 0.2656) e de diferenciação genética entre as populações (G st = 0.3689) foram observados. Além disso, o protocolo de extração de DNA adotado mostrou-se eficiente para a análise do inseto independente do seu estágio de desenvolvimento, evitando-se o acréscimo de reagentes ou etapas adicionais de processamento. Futuros experimentos poderão ser realizados para confirmar se a variabilidade observada pode estar ligada às características de resistência de cada população a um determinado pest...
Com a Constituição de 1988, obrigando as cidades com mais de vinte mil habitantes a elaborarem ou revisarem os seus planos diretores, e com a promulgação do Estatuto da Cidade (2001), regulamentando os instrumentos previstos constitucionalmente, vários trabalhos foram publicados em um contexto estimulante e polêmico que, sem dúvida, deverá continuar a alimentar o diálogo entre planejadores urbanos e especialistas em direito urbanístico: estimulante, por significar a retomada do planejamento municipal, e polêmico, porque os textos legais estão sujeitos a diferentes interpretações. É exatamente nesse ambiente que se insere a presente reflexão, trazendo à tona a importância do Plano Diretor como instrumento de planejamento municipal, discutindo se ele deve se conformar como um plano geral de desenvolvimento ou privilegiar o ordenamento territorial, propondo uma base conceitual para a sua elaboração e, finalmente, indicando os desafios da gestão do seu processo de elaboração e implementação.Palavras-chave: Estatuto da Cidade; planos diretores; planejamento urbano. Abstract: Along with Brazil’s 1988 Constitution came the obligation for cities with a population larger than 20.000 to elaborate or review their Master Urban Plans. Later the Estatuto da Cidade (2001), regulated a series of instruments that the constitution anticipated. Since then many papers have been published in this stimulating context. This new predicament will, undoubtedly, enrich the rapport between urban planners and specialists in urban law. This paper fits exactly in this new milieu, emphasizing the significance of Master Urban Plans as an instrument of local planning, and the discussion whether these plans should be general development instruments or should privilege territorial aspects. The paper also proposes a conceptual base for the elaboration of plans and points to the challenges facing the management of its elaboration and implementation.Keywords: Estatuto da Cidade; master urban plans; urban planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.