The present study evaluated functional aspects of binder of sperm 1 (BSP1) in the bovine species. In a first experiment, cumulus-oocyte complexes (n = 1274) were incubated with frozen-thawed ejaculated sperm (18 hours) in Fert-TALP medium containing: heparin, 10, 20, or 40 μg/mL BSP1. Heparin followed by gelatin affinity chromatography was used for purification of BSP1 from bovine seminal vesicle fluid. With ejaculated sperm, cleavage rates were similar when Fert-TALP medium was incubated with heparin (74.1 ± 2.7%), 10 μg/mL BSP1 (77.8 ± 3.1%), or 20 μg/mL BSP1 (74 ± 2.0%). Day-7 blastocyst rates were equivalent after incubations with heparin (40.8 ± 5.0%) and 10 μg/mL BSP1 (34.1 ± 4.4%), but reduced after 20 μg/mL BSP1 (22.4 ± 2.9%) and 40 μg/mL BSP1 (19.3 ± 4.1%; P < 0.05). In the second experiment, cumulus-oocyte complexes (n = 1213) were incubated with frozen-thawed cauda epididymal sperm (18 hours) in Fert-TALP medium containing: no heparin, heparin, 10, 20, or 40 μg/mL. Cleavage and blastocyst rates were similar after treatments with heparin (68.5 ± 1.3% and 24.7 ± 3.2%, respectively) or without heparin (65.5 ± 1.8% and 27.3 ± 1.6%, respectively). Cleavage was higher after treatment with any BSP1 concentrations (74.2 ± 2.7%-79.0 ± 1.1%) than without heparin (P < 0.05). Also, cleavage was better after Fert-TALP medium incubation with 40 μg/mL BSP1 (79.0 ± 1.1%) than with heparin (68.5 ± 1.3%; P < 0.05). Embryo development was higher (P < 0.05) after treatment with 20 μg/mL BSP1 (35.6 ± 2.5%) and 40 μg/mL (41.1 ± 2%) than after incubations with heparin (24.7 ± 3.2%) or without heparin (27.3 ± 1.6%). Interestingly, BSP1 did not cause reductions in blastocyst rates after fertilization with epididymal sperm, as observed with ejaculated sperm. On the basis of immunocytochemistry, there was BSP1 binding to frozen-thawed ejaculated but not to epididymal sperm. Also, anti-BSP1 reaction remained on ejaculated sperm (as expected) and appeared on epididymal sperm after incubation with purified BSP1. Acrosome reaction of ejaculated and epididymal sperm was induced after incubation with purified BSP1 as well, indicating an effect of BSP1 on capacitation. In conclusion, purified BSP1 from bull seminal vesicles was able to bind to and induce capacitation of ejaculated and epididymal sperm. Also, BSP1 added to fertilization media and allowed proper cleavage and embryo development, with the effects being modulated by previous exposure or not of spermatozoa to seminal plasma.
This study was conducted to evaluate the effects of different feeding levels on the proteome of oviduct and uterus tissues of hormonally stimulated goats during the periovulatory period. Forty goats were separated into four different diet groups: Diet 1.0 M (n = 11), Diet 1.3 M (n = 10), Diet 1.6 M (n = 9), Diet 1.9 M (n = 10), fed with 1.0, 1.3, 1.6 and 1.9 times live weight maintenance, respectively. After four weeks of treatment, six hormonally stimulated females per treatment group were randomly selected for collection of uterine and the oviduct tissue samples. Samples were collected after animals were slaughtered in a commercial unit. Feeding goats with 1.3 to 1.9 times more nutrients than a control group directly influenced the proteome of the oviduct and uterus, altering the expression of proteins that participate in biological processes such as apoptosis, antioxidant, and immunological activities. These events are crucial for fertilization and early embryonic survival. Expression of oviduct proteins such as Tubulin Beta 2B, Transferrin and Disulphide-isomerase A3 increased in the 1.9 M group in relation to the other feeding levels. Disulphide-isomerase A4 showed higher expression in the 1.0 M group compared to diets with higher energetic levels. As energy intake increased in the diets, there was higher expression of Alpha-1-antitrypsin and downregulation of Profilin-1 in the uterus of the goats. In conclusion, this study showed that specific proteins of the goat oviduct and uterus expressed during the periovulatory period are modified as the result of nutritional balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.