Adsorption of carboxymethyl cellulose (CMC) as a method to introduce charged (ionizable) groups onto cellulose cotton fibre surfaces was investigated. The method was based on application of a previously published method used for wood fibres. The amount of adsorbed ionizable groups was determined indirectly by analysis of CMC in solution by the phenol-sulphuric acid method and directly by conductometric titration of the fibres. Results from the two methods correlated well. The molecular weight and purity of the CMC had an influence on its adsorption onto cotton; high molecular weight CMC was preferentially adsorbed. The adsorbed charge correlated linearly with the amount of CMC adsorbed. The total charge of the cotton fibres could be increased by more than 50% by adsorption of CMC. It is expected that this modification procedure can be used in a wide spectrum of practical applications.
The influence of peroxide bleaching and slack-mercerization on the amount of acidic groups in regenerated fibres (viscose, modal and lyocell) were studied. Conductometric titration was used to determine the total content of acidic carboxylic groups. Polyelectrolyte titration was used for surface and total charge determination, and to obtain information about the charge distribution and accessibilities of charged groups. Changes in fibre crystallinity to pre-treatment processes were characterized using iodine sorption (Schwertassek method) and correlated to treatments and the amount of carboxylic groups. For all three types of fibres the amount of accessible carboxyl groups was lowered by an increase in the degree of crystallinity. Bleaching with hydrogen peroxide causes some oxidative cellulose damage and, therefore, a larger amount of carboxyl groups (presumably formed at the end of cellulose chains). Slack-mercerization did not significantly change the total amount of acidic groups in the fibres, but their accessibility to cationic polyelectrolytes, in particular to polymers with high molecular weight was substantially lowered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.