SynopsisThe normal modes for a mixture of charged macromolecules and electrolyte solution are calculated. We derive a generalized Debye relaxation time and the apparent diffusion coefficient of the macroion, which is shown to increase from its Stokes value, obtained in excess of added salt, with decreasing ionic strength. We test our result with experimental data for macromolecules with different charge densities: heparin and chondroitin sulfate. Besides, we show for this latter molecule that while the diffusion coefficient is increased, the scattered intensity is decreased but not by the same factor. Our results are compared with other theories developed in quasielastic light scattering.
SynopsisThe effects of counter-ion substitution in aqueous polyelectrolyte solutions (chondroitin sulfate) on the two main transport phenomena of the ionic species, self-diffusion and electrical mobility, were studied experimentally by tracer methods and dynamic light scattering. The data were analyzed with respect to counter-ion Condensation and stoichiometric substitution of low-ionic counterions by high-ionic charge ones and compared to Manning's theory. Substitution effects on the apparent charge of the macro-ion were derived from the transport data using an extended Nernst-Einstein relationship and discussed in the light of the condensation effect in polyelectrolyte solutions. The effective charge of the polyion (i.e., its residual charge after condensation of counter-ions) and the charge difference between the substituting counter-ions appear determinant in the mechanism of substitution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.