The practice of using implants is growing day by day, and more foreign materials are being inserted for various indications. The field of implantology thus deserves intensive research and careful evaluation of results. Solutions to overcome current problems and risks are necessary. It has taken a long time to arrive at where we are now. Bioabsorbable devices were explored in the 1960s for surgical bone fixation. Failures were followed by changes in ways of thinking and innovations. Improvements in the strength properties and biocompatibility were achieved. Bioabsorbable polymeric materials such as high-molecular-weight polymers were used and also reinforced with other material or, more recently, by self-reinforcement to produce small yet strong devices. New generations of implants include those that contain bioactive substances such as antibiotics and growth factors. Developments in bioabsorbable materials continue to accommodate the new way of thinking brought about by the emergence of the field of tissue engineering. Surgeons, conversely, are also inventing new surgical techniques and methods to exploit the plastic and bioabsorbability properties of these materials for the better future of our patients. Such a multidisciplinary approach that involves surgeons and materials scientists should help to find solutions to the current limitations of these devices.
This study measured the bonding strength between alkyl-2-cyanoacrylates and bone, and examined how treatment of the bone surface with acid, and prolonged exposure to moisture, affected this strength. The initial strength of all cyanoacrylates was high (9.6-11.2 N/mm2). In long-term experiments under water, n- and i-butylcyanoacrylates lost their strength at a far slower rate than ethylcyanoacrylates. However, the butylcyanoacrylates also showed a decrease of 15% in strength after three weeks. Pretreatment of the bone surface with acid did not have a marked effect on bonding strength, although SEM investigation revealed that the acid treatment had increased the porosity of the bone surface. A study of the fracture surface proved that the adhesive film tended to loosen or break after 3 to 6 weeks under water. The decrease in the bonding strength was probably due to the degradation of the adhesive film in water which loosened mechanical bonds between the bone and adhesive. Considering clinical use it would be necessary to achieve better long-term strength.
The outcome of olecranon and patella fractures fixed with biodegradable implants (self-reinforced poly-L-lactide wire combined with self-reinforced polyglycolide screw or self-reinforced poly-L-lactide plug) or with metallic implants (tension band wiring, Kirschner wire and metallic cerclage wire) was compared in a prospective, randomized study. Twenty-five olecranon fractures (15 with biodegradable implants and 10 with metallic ones) and 10 patella fractures (6 with biodegradable implants and 4 with metallic ones) were treated. There were no differences between these methods in outcome. Olecranon and patella fractures can be treated using biodegradable implants successfully. The total expenses are lower because a second operation is not needed to remove the implants after fracture consolidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.