BackgroundPreterm birth is the most common single cause of perinatal and infant mortality, affecting 15 million infants worldwide each year with global rates increasing. Understanding of risk factors remains poor, and preventive interventions have only limited benefit. Large differences exist in preterm birth rates across high income countries. We hypothesized that understanding the basis for these wide variations could lead to interventions that reduce preterm birth incidence in countries with high rates. We thus sought to assess the contributions of known risk factors for both spontaneous and provider-initiated preterm birth in selected high income countries, estimating also the potential impact of successful interventions due to advances in research, policy and public health, or clinical practice.MethodsWe analyzed individual patient-level data on 4.1 million singleton pregnancies from four countries with very high human development index (Czech Republic, New Zealand, Slovenia, Sweden) and one comparator U.S. state (California) to determine the specific contribution (adjusting for confounding effects) of 21 factors. Both individual and population-attributable preterm birth risks were determined, as were contributors to cross-country differences. We also assessed the ability to predict preterm birth given various sets of known risk factors.FindingsPrevious preterm birth and preeclampsia were the strongest individual risk factors of preterm birth in all datasets, with odds ratios of 4.6–6.0 and 2.8–5.7, respectively, for individual women having those characteristics. In contrast, on a population basis, nulliparity and male sex were the two risk factors with the highest impact on preterm birth rates, accounting for 25–50% and 11–16% of excess population attributable risk, respectively (p<0.001). The importance of nulliparity and male sex on population attributable risk was driven by high prevalence despite low odds ratios for individual women. More than 65% of the total aggregated risk of preterm birth within each country lacks a plausible biologic explanation, and 63% of difference between countries cannot be explained with known factors; thus, research is necessary to elucidate the underlying mechanisms of preterm birth and, hence, therapeutic intervention. Surprisingly, variation in prevalence of known risk factors accounted for less than 35% of the difference in preterm birth rates between countries. Known risk factors had an area under the curve of less than 0.7 in ROC analysis of preterm birth prediction within countries. These data suggest that other influences, as yet unidentified, are involved in preterm birth. Further research into biological mechanisms is warranted.ConclusionsWe have quantified the causes of variation in preterm birth rates among countries with very high human development index. The paucity of explicit and currently identified factors amenable to intervention illustrates the limited impact of changes possible through current clinical practice and policy interventions. Our research high...
ObjectiveInfants from multiple pregnancies have higher rates of preterm birth, stillbirth and neonatal death and differences in multiple birth rates (MBR) exist between countries. We aimed to describe differences in MBR in Europe and to investigate the impact of these differences on adverse perinatal outcomes at a population level.MethodsWe used national aggregate birth data on multiple pregnancies, maternal age, gestational age (GA), stillbirth and neonatal death collected in the Euro-Peristat project (29 countries in 2010, N = 5 074 643 births). We also used European Society of Human Reproduction and Embryology (ESHRE) data on assisted conception and single embryo transfer (SET). The impact of MBR on outcomes was studied using meta-analysis techniques with random-effects models to derive pooled risk ratios (pRR) overall and for four groups of country defined by their MBR. We computed population attributable risks (PAR) for these groups.ResultsIn 2010, the average MBR was 16.8 per 1000 women giving birth, ranging from 9.1 (Romania) to 26.5 (Cyprus). Compared to singletons, multiples had a nine-fold increased risk (pRR 9.4, 95% Cl 9.1–9.8) of preterm birth (<37 weeks GA), an almost 12-fold increased risk (pRR 11.7, 95% CI 11.0–12.4) of very preterm birth (<32 weeks GA). Pooled RR were 2.4 (95% Cl 1.5–3.6) for fetal mortality at or after 28 weeks GA and 7.0 (95% Cl 6.1–8.0) for neonatal mortality. PAR of neonatal death and very preterm birth were higher in countries with high MBR compared to low MBR (17.1% (95% CI 13.8–20.2) versus 9.8% (95% Cl 9.6–11.0) for neonatal death and 29.6% (96% CI 28.5–30.6) versus 17.5% (95% CI 15.7–18.3) for very preterm births, respectively).ConclusionsWide variations in MBR and their impact on population outcomes imply that efforts by countries to reduce MBR could improve perinatal outcomes, enabling better long-term child health.
Our findings confirmed the importance of PID as a common cause of hospitalization among reproductive-age women and identified additional gynecologic conditions as causes for hospitalization as well. We found significant age and racial differences not only among women with discharge diagnoses of PID but also among those with discharge diagnoses of uterine leiomyomas and endometriosis.
BackgroundFetal and neonatal mortality rates are essential indicators of population health, but variations in recording of births and deaths at the limits of viability compromises international comparisons. The World Health Organization recommends comparing rates after exclusion of births with a birth weight less than 1000 grams, but many analyses of perinatal outcomes are based on gestational age. We compared the effects of using a 1000-gram birth weight or a 28-week gestational age threshold on reported rates of fetal and neonatal mortality in Europe.MethodsAggregated data from 2004 on births and deaths tabulated by birth weight and gestational age from 29 European countries/regions participating in the Euro-Peristat project were used to compute fetal and neonatal mortality rates using cut-offs of 1000-grams and 28-weeks (2.8 million total births). We measured differences in rates between and within countries using the Wilcoxon signed rank test and 95% confidence intervals, respectively.Principal FindingsFor fetal mortality, rates based on gestational age were significantly higher than those based on birth weight (p<0.001), although these differences varied between countries. The use of a 1000-gram threshold included 8823 fetal deaths compared with 9535 using a 28-week threshold (difference of 712). In contrast, the choice of a cut-off made little difference for comparisons of neonatal deaths (difference of 16). Neonatal mortality rates differed minimally, by under 0.1 per 1000 in most countries (p = 0.370). Country rankings were comparable with both thresholds.ConclusionsNeonatal mortality rates were not affected by the choice of a threshold. However, the use of a 1000-gram threshold underestimated the health burden of fetal deaths. This may in part reflect the exclusion of growth restricted fetuses. In high-income countries with a good measure of gestational age, using a 28-week threshold may provide additional valuable information about fetal deaths occurring in the third trimester.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.